Self Studies

Linear Equations in One Variable Test - 24

Result Self Studies

Linear Equations in One Variable Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What should be subtracted from $$\displaystyle\left(\displaystyle\frac{3}{4}-\frac{2}{3}\right)$$ to get $$\displaystyle\frac{-1}{6}$$?
    Solution
    From the given question, we can write that 

    $$\dfrac{3}{4} - \dfrac{2}{3} -a = -\dfrac{1}{6}$$

    We have to find $$a$$

    $$a=\dfrac{3}{4}-\dfrac{2}{3}+ \dfrac{1}{6}$$

    $$a=\dfrac{3 \times 3 - 2 \times 4 + 1 \times 2}{12}$$

    $$a=\dfrac{9-8+2}{12}$$

    $$a=\dfrac{3}{12}$$

    $$a=\dfrac{1}{4}$$
  • Question 2
    1 / -0
    Solve for $$x$$:
    $$\dfrac {9x}{7-6x}=15$$
    Solution
    $$\dfrac{9x}{7 - 6x} = 15$$

    $$9x = 15(7 - 6x)  = 105 - 90x$$

    $$9x + 90x = 105 $$

    $$99x = 105$$

    $$x = \dfrac{105}{99}$$
  • Question 3
    1 / -0
    The sum of three consecutive multiples of $$11$$ is $$363$$. Find these multiples.
    Solution
    Let the three consecutive multiples of $$11$$  are $$11x,$$  $$11x+11$$  and  $$11x+22$$

    Their sum is $$363$$

    $$11x+11x+11+11x+22=363$$

    $$33x+33=363$$

    $$33x=363-33$$

    $$33x=330$$

    $$x=\dfrac{330}{33}$$

    $$x=10$$

    First multiple  $$=11x=11\times 10=110$$
    Second multiple  $$=11x+11=110+11=121$$
    Third multiple  $$=11x+22=110+22=132$$
  • Question 4
    1 / -0
    One-third of one half of one-fifth of a number is $$15$$ then the number is 
    Solution
    Let the no. is $$x$$

    One-third of one half of one fifth of $$x$$ is $$15$$

    That is,

    $$\dfrac{1}{3}$$ of $$\dfrac{1}{2}$$ of $$\dfrac{1}{5}$$ of $$x=15$$

    $$\dfrac{1}{3}\times  \dfrac{1}{2}\times  \dfrac{1}{5}\times  x=15$$

    $$\dfrac{1}{30}\times x=15$$

    $$x=15\times 30=450$$
  • Question 5
    1 / -0
    If $$ \cfrac { 5.6(x+3) }{ 0.7 } =24, $$ then the value of $$x$$ is
    Solution

    $$ 5.6\dfrac{(x+3)}{0.7}=24 $$

    $$ 5.6x+16.8=16.8 $$

    $$ x=0 $$

  • Question 6
    1 / -0
    If $$\sqrt { 1+\dfrac { x }{ 289 }  } =1\dfrac { 1 }{ 17 }$$ then $$x=$$
    Solution

    We have,

    $$\sqrt{1+\dfrac{x}{289}}=1\dfrac{1}{17}$$

    $$\sqrt{\dfrac{289+x}{289}}=\dfrac{18}{17}$$

     

    On squaring both sides, we get

    $$ {{\left( \sqrt{\dfrac{289+x}{289}} \right)}^{2}}={{\left( \dfrac{18}{17} \right)}^{2}} $$

    $$ \dfrac{289+x}{289}=\dfrac{324}{289} $$

    $$ 289+x=324 $$

    $$ x=324-289 $$

    $$ x=35 $$


  • Question 7
    1 / -0
    Find three consecutive numbers whose sum is $$108$$.
    Solution
    Let, the three consecutive numbers be $$x-1, x, x+1.$$

    According to question,
    $$x-1 + x + x+1 = 108$$
    $$\Rightarrow 3x = 108$$
    $$\Rightarrow x = \dfrac{108}{3}$$
    $$\Rightarrow x =36$$

    Hence, the required numbers are, $$35, 36, 37.$$
  • Question 8
    1 / -0
    Solve for $$x$$:-
    $$\dfrac{{2x - 1}}{2}\,\,\, - \dfrac{{x + 3}}{3}\,\, = \dfrac{{x - 2}}{5}$$
    Solution
    $$\dfrac{{2x - 1}}{2}\,\,\, - \dfrac{{x + 3}}{3}\,\, = \dfrac{{x - 2}}{5}\Rightarrow \dfrac{6x-3-2x-6}{6}=\dfrac{x-2}{5}\Rightarrow 20x-45=6x-12\Rightarrow 14x=33\Rightarrow x=\dfrac{33}{14}$$
  • Question 9
    1 / -0
    If $$4$$ more than twice a number is $$6$$ less than that number then what is the number?
    Solution
    Lets assume the number is $$x$$.
    According to the question statement, we get $$4+2x=x-6$$  
                                                                                $$2x-x = -6-4$$.
                                                                                $$x = -10$$.
  • Question 10
    1 / -0
    Half of a herd of deer are grazing in the field and three fourths of the remaining are playing nearby. The rest 9 are drinking water from the pond. Find the number of deer in the herd.
    Solution
    Let the total no of deer be $$x$$ 

    So, we have 

    $$ x - \left(\dfrac { 1 }{ 2 } x +\dfrac { 3 }{ 4 } \times \dfrac { 1 }{ 2 } x\right) =9\\ x-\left(\dfrac { 1 }{ 2 } x +\dfrac { 3 }{ 8 } x\right) =9\\ x-\dfrac { 7 }{ 8 } x =9\\ \dfrac { 1 }{ 8 } x =9; $$ 
    Thus, $$x =72$$ deer in the herd.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now