Self Studies

Linear Equations in One Variable Test - 36

Result Self Studies

Linear Equations in One Variable Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \frac { 4x }{ 9 } -8=8-\frac { 5x }{ 9 } $$, find $$x$$.
    Solution
    Given, $$\displaystyle \frac { 4x }{ 9 } -8=8-\frac { 5x }{ 9 } $$.

    Transposing $$x$$ terms to one side, we get,

    $$\Longrightarrow\dfrac { 4x }{ 9 } +\dfrac { 5x }{ 9 } =8+8$$

    $$\Longrightarrow\displaystyle \frac { 9x }{ 9 } =16$$

    $$\Longrightarrow x=16$$.

    Hence, option $$B$$ is correct.
  • Question 2
    1 / -0
    A man has Rs. $$x$$ with him. He gave $$\dfrac{1}{4}$$th to his wife, $$\dfrac{1}{3}$$rd to his son and Rs. $$1000$$ to his daughter. Find $$x$$.
    Solution
    The total amount of money with the man = Rs. $$x$$.
    $$\displaystyle \frac { 1 }{ 4 } x+\frac { 1 }{ 3 } x+1000=x$$

    $$\Longrightarrow\displaystyle x-\frac { 1 }{ 4 } x-\frac { 1 }{ 3 } x=1000$$

    $$\Longrightarrow\displaystyle \frac { 12x-3x-4x }{ 12 } =1000$$

    $$\Longrightarrow\displaystyle 5x=1000\times 12$$

    $$x$$ = Rs. $$2400$$ 
  • Question 3
    1 / -0
    The sum of $$5$$, $$9$$ and a number is $$50$$. Find the number.
    Solution
    Let the number be $$ x$$
    According to the question,
    $$\displaystyle 5+9+x=50$$
    $$\therefore \displaystyle x=50-14$$
    $$\therefore \displaystyle x=36$$
  • Question 4
    1 / -0
    The sum of two numbers is $$30$$. One of the number exceeds the other by $$10$$. Find the number.
    Solution
    Let the required number be $$x$$.
    Then, the other number will be $$x+10$$
    According to the question, sum of the two numbers is $$30$$.
    Therefore, $$\displaystyle x+x+10=30$$
    $$\therefore \displaystyle 2x=20$$
    $$\therefore \displaystyle x=10$$
    The numbers are $$10$$ and $$10+10=20$$.
  • Question 5
    1 / -0
    The four consecutive numbers add up to $$74$$. What are these integers?
    Solution
    Let the first integer$$ = p$$
    $$\displaystyle \therefore $$ the second integer $$= p+1$$
    and the third consecutive integer $$= p+2$$ and fourth $$= p+3$$
    $$\displaystyle \because $$ Sum of four consecutive numbers = $$74$$
    $$\displaystyle p+(p+1)+(p+2)+(p+3)=74$$
    $$\Longrightarrow \displaystyle 4p+6=74$$
    $$\Longrightarrow 4p=68$$

    $$\Longrightarrow \displaystyle p=\frac { 68 }{ 4 } $$
    $$\therefore p=17$$
    1 st integer $$= 17$$
    2nd integer $$= 18$$
    3rd integer $$= 19$$
    4 th integer $$= 20$$

    So, option B is correct.
  • Question 6
    1 / -0
    Solve $$8(3+2x)=13x$$ and find the value of $$ x$$
    Solution
    Given, $$ \displaystyle 8(3+2x)=13x$$

    $$\Rightarrow 24+16x=13x$$        ...[By Distribution Law]

    Transposing $$x$$ terms to one side, we get,

    $$\Rightarrow\displaystyle 16x-13x = -24$$

    $$\Rightarrow\displaystyle 3x=-24$$

    $$\Rightarrow x=\dfrac{-24}{3}$$

    $$\Rightarrow x=-8$$
  • Question 7
    1 / -0
    The sum of three consecutive even integers is $$72$$. Find the smallest number
    Solution
    Let the three consecutive numbers be $$ x, x+2$$ and $$x+4$$.
    Sum = $$\displaystyle x+x+2+x+4$$
    $$\therefore  3x + 6 = 72$$
    $$\Longrightarrow 3x=66$$
    $$\Longrightarrow x=22$$
  • Question 8
    1 / -0
    The sum of $$6$$ consecutive numbers is $$105$$. Find the smallest number.
    Solution
    Let the 6 consecutive numbers be $$x, x+1, x+2, x+3, x+4$$ and $$x+5$$
    $$\Longrightarrow \displaystyle x+x+1+x+2+x+3+x+4+x+5=105$$
    $$\Longrightarrow \displaystyle 6x+15=105$$
    $$\therefore 6x=90$$
    $$\therefore x=15$$
  • Question 9
    1 / -0
    The sum of three consecutive multiples of $$5$$ is $$45$$. Which is the smallest of the three multiples?
    Solution
    Let $$5x$$ be the smallest multiple of $$5$$.
    Then, the three consecutive multiples shall be $$5x$$, $$5x+5$$ and $$5x+10$$
    According to the question, 
    $$\displaystyle 5x+5x+5+5x+10=45$$
    $$\therefore \displaystyle 5x+5x+5x=45-15$$
    $$\therefore \displaystyle 15x=30$$
    $$\therefore \displaystyle x=2$$
    $$\displaystyle \therefore $$ Smallest multiple $$= 5x = 5\times 2 = 10$$
  • Question 10
    1 / -0
    The length of a rectangle is $$ 1\frac { 3 }{ 4 } $$ of its breadth. If perimeter is $$66$$. find the length of rectangle.
    Solution
    Let breadth of rectangle be $$x$$
    Length = $$\displaystyle 1\frac { 3 }{ 4 } \times x=\frac { 7 }{ 4 } x$$              ....given

    According to the question,
    $$\displaystyle 2\left( \frac { 7 }{ 4 } x+x \right) =66$$

    $$\Longrightarrow 2\left( \dfrac { 7x+4x }{ 4 }  \right) =66$$

    $$\Longrightarrow\displaystyle 11x=66\times 2$$

    $$\Longrightarrow\displaystyle x=12$$

    Length =$$\dfrac { 7 }{ 4 } \times 12=21$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now