Self Studies

Linear Equations in One Variable Test - 40

Result Self Studies

Linear Equations in One Variable Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\cfrac{7}{m-\sqrt{3}} = \cfrac{\sqrt{3}}{m} + \cfrac{4}{2m}$$, calculate the value of $$m$$.
    Solution
    Given $$\dfrac { 7 }{ m-\sqrt { 3 }  } =\dfrac { \sqrt { 3 }  }{ m } +\dfrac { 4 }{ 2m } =\dfrac { 4+2\sqrt { 3 }  }{ 2m } $$
    $$\Rightarrow  14m=(4+2\sqrt { 3 } )m-\sqrt { 3 } (4+2\sqrt { 3 } )$$
    $$ \Rightarrow (10-2\sqrt { 3 } )m=-4\sqrt { 3 } -6$$
    $$\Rightarrow  m=\dfrac { -4\sqrt { 3 } -6 }{ 10-2\sqrt { 3 }  }$$
  • Question 2
    1 / -0
    If $$3(x + 5) - (x + 2)  = 2x - 3x + 4$$, then find the value of $$x$$.
    Solution
    Given, $$3(x+5)-(x+2)=2x-3x+4$$

    $$\Rightarrow 3x+15-x-2=2x-3x+4$$  ...[By Distribution Law]

    $$\Rightarrow 2x+13=-x+4$$ ...[On simplifying].

    Transposing $$x$$ terms to one side, we get,
    $$\Rightarrow 2x+x=4-13$$

    $$\Rightarrow 3x=-9$$

    $$\Rightarrow x=-3$$.

    Hence, option $$A$$ is correct.
  • Question 3
    1 / -0
    Find the value of $$x: \dfrac {1}{x} + \dfrac {4}{5x} = \dfrac {2}{x + 5}$$
    Solution
    Given  $$\dfrac { 2 }{ x+5 } =\dfrac { 1 }{ x } +\dfrac { 4 }{ 5x } $$
    Taking RHS:

    $$\dfrac { 1 }{ x } +\dfrac { 4 }{ 5x } $$

    LCM is $$5x$$
    $$\Rightarrow \dfrac { 5 }{ 5x } +\dfrac { 4 }{ 5x } \\ \Rightarrow \dfrac { 9 }{ 5x } $$
    Now taking LHS:
    $$\dfrac { 2 }{ x+5 } $$
    LHS $$=$$ RHS
    $$\dfrac { 2 }{ x+5 } =\dfrac { 9 }{ 5x } $$
    $$\Rightarrow 5x\times 2=9(x+5)\\ \Rightarrow 10x=9x+45\\ \Rightarrow x=45$$
  • Question 4
    1 / -0
    Find the value of $$\dfrac {4}{y} + 4$$ given that $$\dfrac {4}{y} + 4 = \dfrac {20}{y} + 20$$
    Solution
    The value of $$\frac{20}{y}+20=5\left ( \frac{4}{y}+4 \right )$$
    Given $$\frac{4}{y}+4=5\left ( \frac{4}{y}+4 \right )$$
    Given one is possible only when the value of $$\frac{4}{y}+4=0$$
  • Question 5
    1 / -0
    If $$\dfrac{3}{9}=\dfrac{3}{x+2}$$, what is the value of $$x$$?
    Solution
    Given, $$\dfrac {3}{9}=\dfrac {3}{x+2}$$
    On cross multiplying, we get
    $$\Rightarrow 3(x+2)=9(3)$$
    $$\Rightarrow (x+2)=(3)$$
    $$\Rightarrow x=9-2$$
    $$\Rightarrow x=7$$
  • Question 6
    1 / -0
    If $$\dfrac {2}{3x + 12} = \dfrac {2}{3}$$, then the value of $$x + 4 $$ is
    Solution
    Given $$\dfrac { 2 }{ 3x+12 } =\dfrac { 2 }{ 3 } $$
    $$\Rightarrow 3(2)=2(3x+12)$$
    $$\Rightarrow 6=6x+24$$
    $$\Rightarrow 6x=-18$$
    $$\Rightarrow x=-3$$
    Therefore $$x+4=-3+4=1$$
  • Question 7
    1 / -0
    If $$13$$ is added to one-half of a certain number, the result is $$37$$. What is the original number?
    Solution
    Let the original number be $$'x'$$.
    Given that $$13$$ is added to one half of $$'x'$$ and the result is $$37$$.
    In the Mathematical Equation form, we can write the above statement as
    $$\dfrac {x}{2}$$ $$+$$ $$13$$ $$=$$ $$37$$
    $$\Rightarrow \dfrac {x}{2}$$ $$=$$ $$37$$ $$-$$ $$13$$

    $$\Rightarrow \dfrac {x}{2}$$ $$=$$ $$24$$
    $$\Rightarrow x$$ $$=$$ $$24$$ $$\times$$ $$2$$
    $$\Rightarrow x$$ $$=$$ $$48$$
    Therefore, the original number is $$'48'$$.
  • Question 8
    1 / -0
    If $$10 + x$$ is $$5$$ more than $$10$$, what is the value of $$2x$$ ? 
    Solution
    Given that
    $$10$$ $$+$$ $$x$$ is $$5$$ more than $$10$$
    Formally, we can express this
    $$10$$ $$+$$ $$x$$ $$=$$ $$10$$ $$+$$ $$5$$
    $$\Rightarrow x$$ $$=$$ $$15$$ $$-$$ $$10$$
    $$\Rightarrow x$$ $$=$$ $$5$$
    To find $$2x$$,
    $$2x$$ $$=$$ $$2$$ $$\times$$ $$x$$
    $$=$$ $$2$$ $$\times$$ $$5$$
    $$=$$ $$10$$
    Therefore, the value of $$'2x'$$ is $$'10'$$.
  • Question 9
    1 / -0
    A triangle has a perimeter of $$13$$ and one side of length $$3$$. If the lengths of the other two sides are equal, what is the length of each of them?
    Solution
    Let $$'x'$$ be the length of one of the equal sides.
    The perimeter of the triangle with sides a$$, b$$ and $$c$$ is $$P=a+b+c$$.
    Substitute the values pf $$P=13$$ and $$a=3, b=x , c=x$$ in $$P=a+b+c$$ as shown below:
    $$\Rightarrow 13=3+x+x$$
    $$\Rightarrow 13=3+2x$$
    $$\rightarrow 2x=13-3$$
    $$\Rightarrow 2x=10$$
    $$\Rightarrow x=5$$
    Therefore, the length of each of the side is $$5$$.
    Hence, option B is correct.
  • Question 10
    1 / -0
    A number is doubled and $$9$$ is added. If the result is tripled it becomes $$75$$. What is that number?
    Solution
    Let $$x =$$ the number
    So according to given conditions,
    $$3(2x+9)=75$$
    $$\Rightarrow 6x+27=75$$
    $$\Rightarrow 6x=75-27$$
    $$\Rightarrow 6x=48$$
    $$\Rightarrow x= \dfrac{48}{6}$$
    $$\Rightarrow x= 8$$

    Hence. the number is $$8$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now