Self Studies

Understanding Quadrilaterals Test - 15

Result Self Studies

Understanding Quadrilaterals Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    PQRS is a parallelogram whose diagonals intersect at M.
    If $$\angle PMS = 54^{\circ}$$, 
    $$\angle QSR = 25^{\circ}$$ and $$\angle SQR = 30^{\circ}$$: find $$\angle RPS $$
    Solution
    Given is a parallelogram PQRS whose diagonals intersect at M.
    Also given $$\angle PMS={ 54 }^{ o }, \angle QSR={ 25 }^{ o }$$ and $$\angle SQR={ 30 }^{ o }$$
    We know that in a parallelogram opposite sides are parallel.
    So PQ$$\parallel$$ SR &  if SQ is considered as the transversal then
    $$ \angle PSM=\angle RQM={ 30 }^{ o }$$ [ Alternate Angles ] 
    Now in $$\triangle$$ PMS,
    $$\angle MPS+\angle PSM+PMS={ 180 }^{ o }$$
    $$\Rightarrow \angle MPS+{ 30 }^{ o }+{ 54 }^{ o }={ 180 }^{ o }$$
    $$ \Rightarrow \angle MPS+{ 84 }^{ o }={ 180 }^{ o }$$ 
    $$\Rightarrow \angle MPS={ 180 }^{ o }-{ 84 }^{ o }$$
    $$\Rightarrow \angle MPS={ 96 }^{ o }$$
     Now $$ \angle RPS=\angle MPS={ 96 }^{ o }$$

  • Question 2
    1 / -0
    PQRS is a parallelogram whose diagonals intersect at M.
    If $$\angle PMS = 54^{\circ}$$, 
    $$\angle QSR = 25^{\circ}$$ and $$\angle SQR = 30^{\circ}$$: find $$\angle PRS$$
    Solution
    Given is a parallelogram PQRS whose diagonals intersect at M.
    Also given $$\angle PMS={ 54 }^{ o }$$, $$\angle QSR={ 25 }^{ o }$$ and$$\angle SQR={ 30 }^{ o }$$
    We know that in a parallelogram opposite sides are parallel.
    So PQ$$\parallel $$SR &  if SQ is considered as the transversal then
    $$ \angle PSM=\angle RQM={ 30 }^{ o } $$[ Alternate Angles ] 
     Also $$\angle PSR=\angle PSQ+\angle QSR={ 30 }^{ o }+{ 25 }^{ o }={ 55 }^{ o }$$
    Now in 
    $$\triangle PMS,\\ \angle MPS+\angle PSM+PMS={ 180 }^{ o }\\ \Rightarrow \angle MPS+{ 30 }^{ o }+{ 54 }^{ o }={ 180 }^{ o }\\ \Rightarrow \angle MPS+{ 84 }^{ o }={ 180 }^{ o }\\ \Rightarrow \angle MPS={ 180 }^{ o }-{ 84 }^{ o }\\ \Rightarrow \angle MPS={ 96 }^{ o }$$
    Now $$\angle RPS=\angle MPS={ 96 }^{ o }$$
    Now in
    $$\triangle PSR,\\ \angle PSR+\angle PRS+RPS={ 180 }^{ o }\\ \Rightarrow \angle PRS+{ 96 }^{ o }+{ 55 }^{ o }={ 180 }^{ o }\\ \Rightarrow \angle PRS+{ 151 }^{ o }={ 180 }^{ o }\\ \Rightarrow \angle PRS={ 180 }^{ o }-{ 151 }^{ o }\\ \Rightarrow \angle PRS={ 29 }^{ o }\\ 
    $$

  • Question 3
    1 / -0
    In parallelogram PQRS $$\angle Q = (4x-5)^{\circ}$$ and $$\angle S = (3x+10)^{\circ}$$. Calculate $$\angle Q$$ 
    Solution
    Opposite angles of a parallelogram are equal. 
    Therefore, 
    $$\angle Q=\angle S$$
    $$(4x-5)^{\circ}=(3x+10)^{\circ}$$
    $$x=15^{\circ}$$
    $$\angle Q=(4*15-5)^{\circ}=55^{\circ}$$

  • Question 4
    1 / -0
    Find the number of sides in a regular polygon, if its each interior angle is $$160^{\circ}$$.
    Solution
    Each interior angle is $$ 160^o $$
    Sum of all angles of any polygon is $$ 180^o (n-2) $$

    Each angle of any polygon = $$ \dfrac{180^o (n-2)}{n} $$

    $$ => 160^o =  \dfrac{180^o (n-2)}{n} $$

    $$ 20n = 360^o $$
    $$ n = 18 $$
    Number of sides of given polygon is $$18$$.
  • Question 5
    1 / -0
    The perimeter of a parallelogram $$ABCD= 40$$ cm, $$AB= 3x$$ cm, $$BC= 2x$$ cm and $$CD= 2\left ( y\, +\, 1 \right )$$ cm. Find the values of $$x$$ and $$y$$.
    Solution
    In the parallelogram $$ABCD$$ side $$AB$$ and $$CD$$ are opposite to each other. Opposite sides of parallelogram are equal.
    Thus,
    $$AB = CD$$ and $$BC = AD $$

    $$\Rightarrow 3x = 2 (y+1)$$    
      $$\Rightarrow 2x = AD $$

     $$\Rightarrow (y+1) = 1.5x$$  

    Now, according to the given condition

         $$AB + BC + CD + AD = 40 $$
     $$\Rightarrow 3x + 2x + 2 (y+1) + 2x = 40 $$

    $$ \Rightarrow 7x + 2 \times 1.5x$$ $$ = 40$$ 

     $$\Rightarrow 7x + 3x = 40 $$

    $$\Rightarrow x = 4$$ 

    Simplify further,  
    $$(y+1) = 1.5x \\= 1.5 \times 4$$  
    $$ = 6$$ 

     $$\Rightarrow y = 5 $$
  • Question 6
    1 / -0
    In parallelogram $$ABCD$$, $$AP$$ and $$AQ$$ are perpendiculars from vertex of obtuse angle $$A$$ as shown in the figure. If $$\angle x\, :\, \angle y= 2\, :\, 1$$; find smallest angles of the parallelogram.(in degrees)

    Solution
    Given is a parallelogram ABCD. AP &  AQ are perpendiculars drawn from vertex A.
    So $$\angle AQD=\angle AQC=\angle APC=\angle PAB={ 90 }^{ o }$$
    Also given $$\angle C=x $$ &  $$\angle QAP=y$$ and $$x:y=2:1$$
    Now in quadrilateral QCPA, 
    $$ \angle QAP+\angle APC+\angle PCQ+\angle CQA={ 360 }^{ o }$$
    $$ \Rightarrow \angle QAP+\angle PCQ+{ 90 }^{ o }+{ 90 }^{ o }={ 360 }^{ o }$$
    $$ \Rightarrow \angle QAP+\angle PCQ={ 180 }^{ o }$$
    $$ \Rightarrow y+x={ 180 }^{ o }$$
    Since $$x:y=2:1$$ so $$x=\dfrac { 2 }{ 3 } \times 180^o={ 120 }^{ o }$$
    $$\Rightarrow \angle C={ 120 }^{ o }$$
    So $$\angle A=\angle C={ 120 }^{ o }$$
    Now $$\angle C+\angle B={ 180 }^{ o }$$ [ adjacent angles in parallelogram are supplementary ]
    $$\Rightarrow \angle B=180^o-120^o={ 60 }^{ o }$$
    So $$\angle B=\angle D={ 60 }^{ o }$$
  • Question 7
    1 / -0
    In the given figure, $$E$$ is mid-point of $$AB$$ and $$DE$$ meets diagonal $$AC$$ at point $$F$$. If $$ABCD$$ is a parallelogram and area of  $$\bigtriangleup ADF$$ is $$60 \: cm^{2}$$, then area of parallelogram $$ABCD$$ is

  • Question 8
    1 / -0
    Find the value of $$x , y$$

    Solution
    Given, ABCD is a parallelogram with $$\angle A=4x+20,\quad \angle B=7y,\quad \angle D=6x+3y-8$$

     Opposite angles of a parallelogram are equal 

    $$\therefore \angle B=\angle D$$,

    $$\quad 6x+3y-8=7y\\ or,6x+3y-8-7y=0\\ or,6x-4y-8=0\quad \\ or,6x-4y=8\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (1)$$

    Any two consecutive angles of a parallelogram are supplementary.
    $$\therefore \angle A+\angle B=180\\ \quad \quad 4x+20+7y=180\\ or,4x+7y=180-20\\ or,4x+7y-160\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  (2)$$

    From (1) and (2),

    $$6x-4y=8...(i)$$ and $$4x+7y=160.....(ii)$$

    Multiply eq.(i) by $$4$$ and multiply eq (ii) by $$6$$

    $$24x-16y=32....(iii)$$ and $$24x+42y=960.....(iv)$$

    Now Eq.$$(iv)$$ $$-$$ Eq.$$(iii)$$ we get,

    $$x=12^{\circ} and\quad y=16^{\circ}$$
  • Question 9
    1 / -0

    Directions For Questions

    In the given figure, if area of triangle ADE is $$60\, cm^{2}$$; 

    ...view full instructions

    the area of $$\triangle ABE$$?

    Solution
    Given, $$Area \ of\  \Delta ADE =  60 cm^2 $$
    From the figure, 

     $$AB  \parallel  CF$$ so, $$ AB  \parallel  DE $$ 
     $$AD\parallel BE$$
    So, $$ABED$$ is a parallelogram.
    The diagonal of a parallelogram divides into two triangles of equal areas. 
    Therefore, 
    Area of $$\Delta ABE  =$$ Area of $$\Delta ADE $$
    => Area of $$\Delta ABE  = 60 \ cm^2 $$
  • Question 10
    1 / -0
    In a quadrilateral ABCD, if AB || CD, $$\angle$$D $$= 2\angle$$B, AD = b and CD = a, then the side AB is of length:
    Solution
    Given, $$AB\parallel CD$$, $$\angle D=2\angle B$$, $$AD=b$$, $$CD=a$$
    Let $$\angle B=x$$ and draw a line segment, $$CM$$ equal and parallel to $$AD$$, as shown in the above figure.
    Hence, $$AMCD$$ is a parallelogram.    [Quadrilateral having one pair of opposite sides equal and parallel]

    Now, $$AD=b$$    
    $$\therefore CM=AD=b$$
    and $$CD=a$$      
    $$\therefore AM=CD=a$$

    $$\therefore \angle D=\angle AMC$$   [Opposite angles of a parallelogram]
    Hence, $$\angle AMC =2x\quad \quad [\angle D=2\angle B=2x]$$

    Now, in $$\triangle MCB$$
    $$2x=\angle MCB +\angle x\quad (\because\ $$ Exterior angle is equal to sum of opposite interior angle$$)$$
    $$\therefore \  \angle MCB=x$$
    Hence, $$ MB=MC \quad [$$As sides opposite to equal angles are equal$$]$$
    $$\therefore \ MB=b$$
    Now, $$AB=AM+MB$$

    $$\therefore \ AB=a+b$$

    Hence, option D is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now