Self Studies

Understanding Quadrilaterals Test - 16

Result Self Studies

Understanding Quadrilaterals Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In parallelogram ABCD, AP and AQ are perpendiculars from vertex of obtuse angle A as shown. If $$\angle x : \angle y = 2 : 1$$ ; find angles of the parallelogram.

    Solution
    Given, ABCD is a parallelogram and $$AQ\bot CD\quad and\quad AP\bot BC$$
    $$\therefore \angle AQC=\angle APC=90$$

    AQCP is forming a quadrilateral.
    As we know that sum of angles of quadrilateral is 360,
    $$\therefore \angle QAP+\angle AQC+\angle QCP+\angle APC=360$$
    $$\\ or,\angle QAP+90+\angle QCP+90=360\quad \quad \quad \quad \quad \quad \quad \quad (\because \angle AQC=\angle APC=90)\\ or,\angle QAP+\angle QCP=360-180\\ or,\angle QAP+\angle QCP=180\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (1)$$
    Given $$\angle QCP=x,\quad \angle QAP=y\\ x\quad :\quad y\quad =\quad 2\quad :\quad 1$$
    Let angle be m. 
    $$\therefore x=2m\quad and\quad y=m$$
    from (1),
    $$\quad \angle QAP+\angle QCP=180\\ or,m+2m=180\\ or,\quad 3m=180\\ or,\quad m=60$$
    $$\angle QCP=2m\\ or,\angle C=2\times 60=120\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad   (2)$$

    In a parallelogram ABCD, Sum of any two consecutive angles is supplementary,
    $$\quad \therefore \angle C+\angle D=180\\ or,\angle 120+\angle D=180\\ or,\angle D=180-120\\ or,\angle D=60\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad   (3)$$

    In a paralleogram ABCD, opposite angles are equal,
    $$\therefore \angle C=\angle A=120\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (from\quad 2)\\ \quad \angle D=\angle B=60\qquad \qquad \qquad \qquad \qquad \quad \quad         (from\quad 3)$$






  • Question 2
    1 / -0
    The perimeter of a parallelogram ABCD = 40 cm, AB = 3x cm, BC = 2x cm and CD = 2(y +1) cm. Find the values of x and y.
    Solution
    Let the parallelogram be ABCD Perimeter= $$40 $$cm 
    AB $$= 3x$$ cm BC$$= 2x$$ cm(given) 
    Perimeter of parallelogram $$2(3x+2x)=40$$ 
    solving equation we get $$ x=4$$ 
    Also,AB=CD(opposite sides of parallelogram) $$3x=2(y+1)$$ (given) 
    Putting $$x=4$$ 
    $$3(4)=2y+2$$ 
    $$12=2y+2$$ 
    $$10=2y$$
    Hence $$ y=5$$ and $$x=4$$
  • Question 3
    1 / -0
    $$ABCD$$ is parallelogram. If $$L$$ and $$M$$ are the middle points of $$BC$$ and $$ CD $$, then $$ \overrightarrow {AL}+ \overrightarrow {AM}= $$
    Solution
    $$\displaystyle AL=AB+BL=AB+\frac { 1 }{ 2 } BC=AB+\frac { 1 }{ 2 } AD$$
    $$\displaystyle AM=AD+DM=AD+\frac { 1 }{ 2 } DC=AD+\frac { 1 }{ 2 } AB$$
    Adding, $$\displaystyle AL+AM=\frac { 3 }{ 2 } \left( AB+AD \right) =\frac { 3 }{ 2 } \left( AB+BC \right) =\frac { 3 }{ 2 } AC$$

  • Question 4
    1 / -0
    The bisectors of interior angles of a parallelogram forms a ___________.
    Solution

    $$ABCD$$ is a parallelogram

    $$AE$$ bisects $$\angle BAD$$

    $$BF$$ bisects $$\angle ABC$$

    $$CG$$ bisects $$\angle BCD$$

    $$DH$$ bisects $$\angle ADC$$

    $$\angle BAD + \angle ABC = 180{^o}$$ (because adjacent angles of a parallelogram are supplementary)

    $$ \angle BAJ = \cfrac{1}{2} \angle BAD $$ because $$AE$$ bisects $$\angle BAD$$       

    $$ \angle ABJ = \cfrac{1}{2} \angle ABC $$ because $$DH$$ bisects $$\angle ABC$$

    $$\angle BAJ$$ + $$\angle ABJ$$ = $$90^{o}$$ [ halves of supplemetary angles are complementary]

    $$\triangle ABJ$$ is a right triangle because its acute interior angles are complementary with $$\angle J = 90^o$$

    Similarly, $$\angle K =\angle L= \angle I = 90^o$$

    In quadrilateral $$IJLK$$, since all angles are $$90^o$$, it must be a rectangle.

    Therefore, internal angle bisectors of a parallelogram forms a rectangle.

  • Question 5
    1 / -0
    PQRS is a parallelogram and M, N are the mid-points of PQ and RS respectively. Which of the following is not true ?

    Solution
    In parallelogram $$PQRS,$$ 

    We know that $$PQ= SR$$ 

    Given, 
    M is the mid-point of PQ and N is the mid-point of RS

    $$\therefore PM=MQ=SN=NR$$     ...(1)

    and we know that sides $$PQ$$ and $$RS$$ are parallel to each other.

    $$\therefore QM$$ and $$NS$$ will also be parallel to each other.

    $$\therefore$$ We can say that $$MSNQ$$ is a parallelogram

    Hence its opposite sides will also be parallel

    $$\Rightarrow MS \parallel QN$$

    option D is incorrect so the correct answer according to the question is Option D. 

  • Question 6
    1 / -0
    Look at the pairs of shapes Which is a pair of rectangles?
    Solution
    Option B shows rectangle.
    Hence, the answer is Option B.
  • Question 7
    1 / -0
    If an angle of a parallelogram is 24$$^o$$ less than twice the smallest angle, then the value of largest angle of the parallelogram is
    Solution
    Let the smallest angle be $$x$$ 

    then,the largest angle will be $$=180-x $$

    but, the same equals to $$[2x-24] $$

    so we have $$[2x-24]= 180-x$$ 

    $$3x= 204 $$

    $$x=68$$

    thus the largest angle $$180-68= 112$$ degree
  • Question 8
    1 / -0
    In the given figure, ABCD is a parallelogram in which $$ \angle DAB $$ = 75$$^o$$ and $$\angle$$DBC = 60$$^o$$ then the measure of $$\angle$$BDC is equal to ?

    Solution
    Opposite angles of parallelogram are equal.
     $$\angle DAB = \angle BCD = {75}^{o}$$  and $$\angle DBC = {60}^{o}$$ 
     $$ \angle BDC + \angle DBC + \angle BCD = {180}^{o}$$ 
     $$  \angle BDC = {180}^{o} - \angle DBC - \angle BCD 
       = {180}^{o} - {75}^{o} - {60}^{o}
       = {45}^{o} $$
  • Question 9
    1 / -0
    A quadrilateral in which only one pair of opposite sides are parallel is called a ..........
    Solution

    $$\Rightarrow$$  We know that in square, rectangle and rhombus two pairs of opposite sides are parallel, so answer can not be square, rectangle or rhombus.
    $$\Rightarrow$$  We also know the properties of trapezium in which only one pair of opposite sides are equal.
    $$\Rightarrow$$  So, correct answer is option D trapezium.
  • Question 10
    1 / -0
    In a parallelogram ABCD, $$\angle$$D = 135$$^o$$, determine the measure of $$\angle$$A .
    Solution
    $$ABCD$$ is a parallelogram, $$\angle D=135$$
    We know, in a parallelogram, opposite angles are equal.
    Thus, $$\angle B =\angle D$$
       $$=>\angle B=135$$
    Also, in a parallelogram opposites sides are parallel. Thus,
       $$AD\parallel BC$$
    Now, $$AD\parallel BC$$ and $$AB$$ is the transversal, then
        $$\angle A +\angle B=180$$
    $$=>\angle A=180-135$$
    $$=>\angle A=45$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now