Given, ABCD is a parallelogram and $$AQ\bot CD\quad and\quad AP\bot BC$$ $$\therefore \angle AQC=\angle APC=90$$ AQCP is forming a quadrilateral. As we know that sum of angles of quadrilateral is 360, $$\therefore \angle QAP+\angle AQC+\angle QCP+\angle APC=360$$ $$\\ or,\angle QAP+90+\angle QCP+90=360\quad \quad \quad \quad \quad \quad \quad \quad (\because \angle AQC=\angle APC=90)\\ or,\angle QAP+\angle QCP=360-180\\ or,\angle QAP+\angle QCP=180\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (1)$$ Given $$\angle QCP=x,\quad \angle QAP=y\\ x\quad :\quad y\quad =\quad 2\quad :\quad 1$$ Let angle be m. $$\therefore x=2m\quad and\quad y=m$$ from (1), $$\quad \angle QAP+\angle QCP=180\\ or,m+2m=180\\ or,\quad 3m=180\\ or,\quad m=60$$ $$\angle QCP=2m\\ or,\angle C=2\times 60=120\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (2)$$ In a parallelogram ABCD, Sum of any two consecutive angles is supplementary, $$\quad \therefore \angle C+\angle D=180\\ or,\angle 120+\angle D=180\\ or,\angle D=180-120\\ or,\angle D=60\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (3)$$ In a paralleogram ABCD, opposite angles are equal, $$\therefore \angle C=\angle A=120\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (from\quad 2)\\ \quad \angle D=\angle B=60\qquad \qquad \qquad \qquad \qquad \quad \quad (from\quad 3)$$