Self Studies

Understanding Quadrilaterals Test - 18

Result Self Studies

Understanding Quadrilaterals Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Given that $$ABCD$$ is a parallelogram whose diagonals intersect at point $$O$$. $$\angle ABC={110}^{o}$$, $$\angle ACB={35}^{o}$$ and $$\angle ADB={55}^{o}$$. The term that best describes $$ABCD$$ is:
    Solution
    $$AD\parallel  BC$$, $$DB$$ is the transversal, therefore,
    $$\angle CBD=\angle ADB={55}^{o}$$(alt$$\angle s$$)
    In $$\triangle BOC$$,
    $$\angle BOC={180}^{o}-(\angle OCB+\angle OBC)$$
    $$={180}^{o}-({35}^{o}+{55}^{o})={!80}^{o}-{90}^{o}={90}^{o}$$
    $$\Rightarrow$$ $$BD\bot AC$$
    Also, in $$\triangle ABC$$, $$\angle BAC={180}^{o}-({110}^{o}-{35}^{o})$$
    $$={180}^{o}-{145}^{o}={35}^{o}$$
    Hence, $$\angle ACB=\angle BAC\Rightarrow AB=BC$$
    $$\therefore$$ $$ABCD$$ is a parallelogram, whose adjacent sides are equal and diagonals are perpendicular to each other
    $$\Rightarrow$$ $$ABCD$$ is a rhombus.
  • Question 2
    1 / -0
    In a parallelogram, the sum of adjacent angles is:
    Solution
    $$ABCD$$ is a parallelogram.
    $$\therefore$$ $$AB$$ $$\parallel$$ $$DC$$ and $$AD$$ $$\parallel BC$$
    $$\therefore$$ $$\angle$$$$d$$ $$+$$ $$\angle$$ $$e$$     (corresponding angle)
    $$\angle$$$$a$$ $$+$$ $$\angle e$$ = $$180$$$$^\circ$$     (supplementary angle or linear pair)
    $$\angle$$$$a $$ $$+$$ $$\angle$$$$d$$ = 180$$^\circ$$   ($$\because$$ $$\angle$$$$d$$ = $$\angle$$$$e$$)
    $$\therefore$$ sum of adjacent angle are $$180$$$$^\circ$$
    Ans : B)$$ 180$$$$^\circ$$

  • Question 3
    1 / -0
    $$ABCD$$ is a parallelogram as shown in figure. If $$AB = 2AD$$ and $$P$$ is mid-point of $$AB$$, then $$\angle{CPD}$$ is equal to

  • Question 4
    1 / -0
    In the given figure, PQRS is a parallelogram. If perimeter of parallelogram PQRS is 40 cm and $$PQ = 12 cm$$, then PS is equal to

    Solution
    Perimeter of $$\parallel gm $$ $$=40cm$$
    $$2(PQ+PS)=40cm$$
    $$2(12+PS)=40$$
    $$PS=(40/2)-12$$
    $$PS=8cm$$
  • Question 5
    1 / -0
    In the given figure, $$PQRS$$ is a parallelogram and $$\angle SPQ=60^{\circ}$$. If the bisectors of $$\angle P$$ and $$\angle Q$$ meet at $$A$$ on $$RS$$, then which of the following is not correct?

    Solution

    We have $$\angle SPQ=60^{\circ}$$
    $$\angle P+\angle Q=180^{\circ}$$ (adj. $$\angle s$$ of a || gm are supp)
    $$\angle Q=180^{\circ}-60^{\circ}=120^{\circ}$$
    Now $$PQ||SR$$ and $$AP$$ is the transversal.
    $$\therefore SAP=\angle APQ=30^{\circ}$$  ($$\because AP$$ bisects $$\angle SPQ$$)
    $$\angle SPA=\angle SAP\Rightarrow SA=SP$$ (isos. $$\Delta $$ property)  ...(i)
    Also $$\angle RAQ=\angle AQP=60^{\circ}$$
    ($$PQ||SR,\:AQ$$ is transversal, alt $$\angle s$$)
    and $$\angle AQP=\dfrac{1}{2}\angle PQR=60^{\circ}$$
    $$\Rightarrow \angle RQA=\angle RAQ$$  (AQ bisect $$\angle PQR$$)
    $$\Rightarrow RA=RQ$$  (isos. $$\Delta $$ property)  ....(ii)
    $$\therefore $$ from eqn. (i) and (ii)
    $$AS=AR$$   ($$\because SP=RQ$$, opp. side of a ||gm)
    Also, in $$\Delta ARQ,\:\angle ARQ=60^{\circ}$$
    $$\Rightarrow \Delta ARQ$$ is equilateral
    $$\Rightarrow AR=RQ\Rightarrow AR=SP$$
    Therefore, the incorrect statement is $$AQ=PQ$$.
  • Question 6
    1 / -0
    The sum of two opposite angles of a parallelogram is $$130^o$$. Find the measure of each of its angles
    Solution
    $$Let\quad ABCD\quad a\quad parallelogram\quad with\quad four\quad angles\quad as\quad \angle A,\angle B,\angle C\quad and\quad \angle D\\ \angle A+\angle C\quad =\quad 130(Given)\\ Also\quad \angle A\quad =\angle C\quad (Opposite\quad angles\quad of\quad \parallel gram\quad are\quad equal).......(1)\\ \Longrightarrow \angle A\quad +\quad \angle A\quad =130\\ \Longrightarrow 2\angle A\quad =\quad 130\\ \Longrightarrow \angle A\quad =\quad \frac { 130 }{ 2 } \quad =\quad 65\\ \Longrightarrow \angle A\quad =\quad \angle C\quad =\quad 65....(2)\\ Also\quad \angle A\quad +\quad \angle B\quad =180(Sum\quad of\quad cointerior\quad angles\quad is\quad 180)\\ \Longrightarrow 65\quad +\quad \angle B\quad =\quad 180\\ \Longrightarrow \angle B\quad =\quad 180\quad -\quad 65\quad =\quad 115\\ Also\quad \angle B\quad =\quad \angle D\quad =115(Opposite\quad angles\quad of\quad \parallel gram\quad are\quad equal)\\ Hence\quad all\quad the\quad angles\quad are\quad 65, 115, 65\quad and\quad 115$$
  • Question 7
    1 / -0
    In a parallelogram ABCD, if $$\angle A\, =\, 65^{\circ}$$ ,then $$\angle B,\, \angle C\, and\, \angle D$$ are respectively
    Solution
    $$\because$$ In a parallelogram, opposite angles are equal. 
    So,
    $$\angle A\, =\, \angle C\, =\, 65^{\circ}$$

    Also $$\angle B\, =\, \angle D$$ we have

    $$\angle A\, =\, \angle B\, +\, \angle C\, +\, \angle D\, =\, 360^{\circ}$$

    $$\Rightarrow\, 65^{\circ}\, +\, \angle B\, +\, 65^{\circ}\, +\, \angle B\, =\, 360^{\circ}$$

    $$\Rightarrow\, 2\, \angle B\, =\, 360^{\circ}\, -\, 130^{\circ}$$

    $$\Rightarrow\, 2\, \angle B\, =\, 230^{\circ}$$

    $$\Rightarrow\,\angle B\, =\, \displaystyle \frac {230^{\circ}}{2}\, =\, 115^{\circ}$$

    $$\therefore\, \angle B\, =\, \angle D\, =\, 115^{\circ}$$
  • Question 8
    1 / -0
    In the given figure, $$ABCD$$ is a parallelogram, diagonals $$BD$$ and $$AC$$ intersect each other at $$E$$. If $$BE + CE = 8$$ cm, then $$AC + BD$$ is equal to

    Solution
    Given: $$ABCD$$ is a parallelogram

    We know that the diagonals of a parallelogram bisect each other.

    $$\Rightarrow $$ The diagonals $$BD$$ and $$AC$$ bisect each other.

    $$\therefore AE = EC$$ and $$BE = ED $$


    We know, $$AC+BD=AE+EC+BE+ED$$

                                         $$= EC +EC + BE +BE $$

                                         $$= 2 \times (EC + BE) $$

                                          $$=$$ $$ 2 \times 8 $$ cm 

                                          $$= 16$$ cm 
  • Question 9
    1 / -0
    Which of the following is not true?
    Solution
    The sum of all the four angles of a parallelogram is $$ 360^{\circ}$$ , Hence option (D) is false.
  • Question 10
    1 / -0
    In a parallelogram ABCD, diagonals AC and BD intersect at O. If AO = $$6$$ cm then find the length of AC.
    Solution
    In $$\parallel gm$$ ABCD, AC and BD are diagonals 
    We know that diagonals of a $$\parallel gm$$ bisect each other
    Therefore,
    $$AC=2AO$$
            $$=2\times 6$$
            $$=12cm$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now