Self Studies

Understanding Quadrilaterals Test - 25

Result Self Studies

Understanding Quadrilaterals Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$ABCD$$ is a parallelogram and $$P$$ is a point on the segment $$\overline {AD}$$ dividing it internally in the ratio $$3 : 1$$ the line $$\overline {BP}$$ meets the diagonal $$\overline {AC}$$ in $$Q$$. Then the ratio $$AQ:QC$$ is
    Solution
    According to question,
    $${l} p=\frac { { 3\overline { d }  } }{ 4 }  \\ lets, \\ AC=\lambda \, (\overline { b } +\overline { d } ) \\ PB=\frac { { 3\overline { d }  } }{ 4 } +\gamma (\overline { b } -\frac { { 3\overline { d }  } }{ 4 } ) \\ then,co-ordinate\, are, \\ AC=PB \\ \lambda \, (\overline { b } +\overline { d } )=\frac { { 3\overline { d }  } }{ 4 } +\gamma (\overline { b } -\frac { { 3\overline { d }  } }{ 4 } ) \\ \lambda \, (\overline { b } +\overline { d } )=\frac { { 3\overline { d }  } }{ 4 } +\gamma \overline { b } -\frac { { 3\gamma \overline { d }  } }{ 4 }  \\ Now,compare\, both\, \, side, \\ \lambda =\gamma ,\, \, \, \, \, \, \, \lambda =\frac { 3 }{ 4 } -\frac { { 3\gamma  } }{ 4 }  \\ \, \, \, \, \, \, \, \, \lambda =\frac { 3 }{ 4 } -\frac { { 3\lambda  } }{ 4 }  \\ \, \, \, \, \frac { { 7\lambda  } }{ 4 } =\frac { 3 }{ 4 }  \\ \therefore \, \, \, \, \lambda =\frac { 3 }{ 7 }  \\ it\, means,\, Q\, po{ { int } }\, is\, \frac { 3 }{ 7 } (\overline { b } +\overline { c } ) \\ So,the\, AQ:QC\, is\, 3:4 \\ and,\, the\, \, correct\, \, option\, is\, A. $$

  • Question 2
    1 / -0
    $$ABCD$$ is a parallelogram $$X$$ and $$Y$$ are the mid points of $$BC$$ and $$CD$$ respectively. Then, ar(parallelogram $$ABCD$$) is

    Solution
    $$X$$ and $$Y$$ are the mid-points of sides $$BC$$ and $$CD$$.
    In $$\triangle BCD,$$
    $$XY\parallel BD$$ and $$XY=\dfrac{1}{2}BD$$           {From the mid point theorem}

    $$\Rightarrow$$  $$ar(\triangle CYX)=\dfrac{1}{4}ar(\triangle DBC)$$    {property of triangle having mid points}

    $$\Rightarrow$$  $$ar(\triangle CYX)=\dfrac{1}{8}ar(\parallel^{gm}\,ABCD)$$      [ Area of parallelogram is twice the area of triangle made by diagona ]    --- ( 1 )

    Since, parallelogram $$ABCD$$ and $$\triangle ABX$$ are between the same parallel lines $$AD$$ and $$BC$$ and $$BX=\dfrac{1}{2}BC.$$

    $$\Rightarrow$$  $$ar(\triangle ABX)=\dfrac{1}{4}ar(\parallel^{gm}\,ABCD)$$     ----- ( 2 )

    Similarly, $$ar(\triangle AYD)=\dfrac{1}{4}ar(\parallel^{gm} ABCD)$$       ----- ( 3 )

    Now, $$ar(\triangle AXY)=ar(\parallel^{gm}\,ABCD)-[ar(\triangle ABX)+ar(\triangle AYD)+ar(\triangle CYX)]$$

                                    $$=ar(\parallel^{gn} ABCD)-[\dfrac{1}{4}ar(\parallel^{gm}ABCD+\dfrac{1}{4}ar(\parallel^{gm}ABCD)+\dfrac{1}{8}ar(\parallel^{gm}ABCD)]$$              [ From ( 1 ) ( 2 ) and ( 3 ) ]

                                    $$=ar(\parallel^{gm}ABCD)-\dfrac{5}{8}(\parallel^{gm}ABCD)$$

    $$\Rightarrow$$  $$ar(\triangle AXY)=\dfrac{3}{8}ar(\parallel^{gm}ABCD)$$

    $$\therefore$$  $$ar(\parallel^{gm}ABCD)=\dfrac{8}{3}\times ar(\triangle AXY)$$
  • Question 3
    1 / -0
    Let ABC is given triangle having respective sides a, b, c. D, E, F are points of the sides BC, CA, AB respectively so that AFDE is a parallelogram. The maximum area of the parallelogram is?
    Solution

  • Question 4
    1 / -0
    The perimeter of a parallelogram is $$38 \text{ cm}$$. If the longer side is $$11 \text{ cm}$$, find the length of shorter side.
    Solution
    Given:
    perimeter of parallelogram $$=38 \text{ cm}$$
    length of longer  side $$=11 \text{ cm}$$ 
    To find: shorter side 
    since, perimeter of parallelogram $$=2(l + h)$$
    $$\implies 38 =  2(l + b)$$
    $$\implies 38 = 2(11 + b)$$
    $$\implies 38 = 22 + 2b$$
    $$\implies b=\dfrac{{16}}{2} $$
    $$\implies b = 8\text{ cm}$$
    $$\therefore$$ The length of the shorter side is $$8\text{ cm}$$
  • Question 5
    1 / -0
    How many unique measurements are needed to construct a parallelogram.
    Solution

  • Question 6
    1 / -0
    The point of intersection of the diagonals of a quadrilateral divides one diagonal in the ratio $$1: 2 .$$ Can it be a parallelogram?
    Solution
    Let $$ABCD$$ be the quadrilateral in which $$AC$$ and $$BD$$ are the diagonals that intersect at $$O$$.
    Now, 
    $$\dfrac{AO}{OC} =\dfrac{1}{2}$$ 
    We know that diagonals of a parallelogram bisect eah other. 
    So, for $$ABCD$$ to be a parallelogram, 
    $$\dfrac{AO}{OC} = \dfrac{1}{1}$$ 
    But here 
     $$\dfrac{AO}{OC} =\dfrac{1}{2}$$ 
    So, the quadrilateral can't be a parallelogram in which the point of intersection of the diagonals divide one diagonal in the ratio of $$1 : 2$$. 
  • Question 7
    1 / -0
    $$ABCD$$ is a parallelogram. If $$P$$ be a point on $$CD$$ such that $$AP = AD$$ , then the measure of $$\angle P A B + \angle B C D$$ is
    Solution
    $$\angle PAB=\angle APD$$   [alternate interior angles]

    And as in $$\triangle APD$$

    $$AP=AD$$

    so, $$\angle D=\angle APD=\angle PAB$$

    So, $$\angle PAB+\angle BCD=\angle D+\angle BCD=\angle D+\angle C=180^\circ$$  since $$\angle C$$ and $$\angle D+$$ alternate opposite angle for $$AD||BC$$

    $$\therefore\ \angle PAB+\angle BCD=180^\circ$$ 

  • Question 8
    1 / -0
    In a parallelogram $$ABCD$$, the diagonals intersect at $$O$$, if $$OA=3y-4$$ and $$OC=y+20$$ then $$y=$$
    Solution

  • Question 9
    1 / -0
    If $$PQRS$$ is a parallelogram and $$M$$ is a point on $$PQ$$ such that $$PM=\dfrac{3}{4}PQ$$ then find the $$ar(PQR)$$ if$$ar(PMRS)=28\ cm^{2}$$
    Solution

  • Question 10
    1 / -0
    $$x, y$$ are the mid-points of opposite sides $$AB$$ and $$DC$$ respectively of a parallelogram $$ABCD, AY$$ and $$DX$$ are intersecting at $$S, CX$$ and $$BY$$ are intersecting at $$R$$. Then $$SXRY$$ is a _
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now