Self Studies

Understanding Quadrilaterals Test - 26

Result Self Studies

Understanding Quadrilaterals Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the adjoining figure, $$ABCD$$ is a parallelogram in which $$\angle BAO=35^{o}$$ and $$\angle COD=95^{o}, \angle DAC=50^{o}$$
    So, the measure of $$\angle ABO$$ is_____________

    Solution

  • Question 2
    1 / -0

    If the quadrilateral $$ABCD$$ is a parallelogram. What is the value of $$x$$?

    Solution
    In parallelogram $$ABCD,$$

    We know that the opposite angles of a parallelogram are equal.

    Hence $$\angle A=\angle C $$

    $$\Rightarrow 3{y} = 3x + {3}$$      $$...(1)$$

    and $$\angle B=\angle D$$

    $$\therefore\  \angle D = 2y - {5} $$       $$...(2)$$

    We know that the sum of angles of a parallelogram is $$360^\circ$$

    $$\Rightarrow (3y)+(3x+3)+(2y-{5})+(2y-{5})={360}$$

    $$\Rightarrow 3y+3y+4y-10={360}$$

    $$\Rightarrow 10y-{10}={360}$$

    $$\Rightarrow 10y={360}+{10}$$

    $$\Rightarrow 10y={370}$$

    $$\Rightarrow y=\dfrac{370}{10} = {37^\circ}$$

    Substitute $$y=37^\circ$$ in $$(1)$$

    $$\Rightarrow 3\times {(37^\circ)} = 3x + {3^\circ}$$

    $$\Rightarrow 111=3x+3$$

    $$\Rightarrow 3x=111-3$$

    $$\Rightarrow 3x=108$$

    $$\Rightarrow x = \dfrac{{108}}{3} = 36^\circ$$
  • Question 3
    1 / -0
    In parallelogram $$ABCD$$, the bisectors of $$\angle A$$ and $$\angle B$$ intersect at $$M$$.If $$\angle A=80^{o}$$, then $$\angle AMB=$$.........
    Solution
    Given in parallelogram $$ABCD, \; AM$$ and $$BM$$ are bisectors of $$\angle{A}$$ and $$\angle{B}$$ respectively.
    As we know that sum of adjacent angles in a parallelogram is $$180°$$.
    $$\therefore \angle{A} + \angle{B} = 180°$$
    $$\Rightarrow 2 \angle{BAM} + 2 \angle{ABM} = 180°$$
    $$\Rightarrow \angle{BAM} + \angle{ABM} = \cfrac{180°}{2} = 90° ..... \left( 1 \right)$$
    Now, in $$\triangle{AMB}$$,
    $$\angle{BAM} + \angle{AMB} + \angle{ABM} = 180°$$
    $$\Rightarrow \angle{AMB} + 90° = 180°$$
    $$\Rightarrow \angle{AMB} = 180° - 90° = 90°$$
  • Question 4
    1 / -0
    Measures of opposite angles of parallelogram are $$(3x-2) ^{\circ} $$ and $$(50-x) ^{\circ} $$. Find the measure of its other angles.
    Solution

    Here, $$ABCD$$ is a parallelogram
    Let $$\angle A=(3x-2)^o$$ and $$C=(50-x)^o$$
    We know that in parallelogram opposite angles are equal.
    $$\therefore$$  $$\angle A=\angle C$$
    $$\Rightarrow$$  $$3x-2=50-x$$
    $$\Rightarrow$$  $$4x=52$$
    $$\Rightarrow$$  $$x=13$$
    $$\Rightarrow$$  $$\angle A=(3x-2)^o=(3\times 13-2)^o=37^o$$
    In parallelogram sum of adjacent angles are supplementary.
    $$\therefore$$  $$\angle A+\angle B=180^o$$
    $$\Rightarrow$$  $$37^o+\angle B=180^o$$
    $$\therefore$$  $$\angle B=143^o$$
    Hence other two equal opposite angles are $$143^o$$

  • Question 5
    1 / -0
    In a parallelogram, the sum of adjacent angles is:
  • Question 6
    1 / -0
    The diagonals do not necessarily intersect at right angles in a
    Solution
    The diagonals do not necessarily intersect at right angles in a parallelogram. But opposite sides and opposite angles should be equal.
  • Question 7
    1 / -0
    Two adjacent angles of a parallelogram are $$\left(2x+25\right)^{o}$$ and $$\left(3x-5\right)^{o}.$$ The value of $$x$$ is
    Solution
    We know that sum of adjucent angled of a parallelogram is $$180^o$$
    $$(2x+25)^o+(3x-5)^o=180^o$$
    $$5x+20=180^o$$
    $$5x=180^o - 20^o$$
    $$5x=160^o$$
    $$x=160^o/5=32^o$$
  • Question 8
    1 / -0
    In a parallelogram PQRS , if $$ \angle\,  P = 60^{\circ} $$, then other three angles are:
    Solution
    Given: $$ \angle\, P = 60^{\circ} $$ 
    $$ \therefore \, \angle\, R = 60^{\circ} $$            $$\therefore $$   opposite angles are equals 

    Similarly,
    $$\angle Q = \angle S$$

    Now,
    $$\angle P+\angle Q = 180^o$$            {supplementary angles because these interior angles lie on the same side of the transversal}

    Therefore, 
    $$ \angle\, Q = \angle S = 180^o - 60^{\circ} $$ 
    $$ \angle\, Q = \angle S = 120^o $$ 
  • Question 9
    1 / -0
    If two adjacent angles of a parallelogram are in the ratio $$ 2 : 3 $$ , then the measure of angles are:
    Solution
    Let the angles be $$ 2x , 3x $$ 
    $$ 2 x + 3 x = 180 $$
    $$ \Rightarrow \, 5x = 180 $$ 
    $$ \Rightarrow \, 5x = 180 $$ 
    So , the angles are 
    $$ 2 \times 36 = 72 $$ 
    $$ 3 \times 36 = 108 $$ 
  • Question 10
    1 / -0
    The angle between the two altitudes of a parallelogram through the same vertex of an obtuse angle of the parallelogram is $$ 30^{\circ} $$. The measure of the obtuse angle is 
    Solution
    ABCD is a parallelogram. 
    From the question it is given that, ∠EBF =$$ 30^o$$
     Sum of interior angles of a quadrilateral = $$360^o$$ 
    Then, ∠EBF + ∠BED + ∠EDF + ∠DFB = $$360^o$$
     ∠EDF = $$360^o – (90^o + 90^o + 30^o) $$
    ∠EDF = $$150^o $$ which is an obtuse angle.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now