Self Studies

Understanding Quadrilaterals Test - 6

Result Self Studies

Understanding Quadrilaterals Test - 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    How many simple closed curves are there?

    Solution
    $$ A\quad simple\quad closed\quad curve\quad encloses\quad a\quad single\quad area \quad and \quad do \quad not\quad have  \quad intersecting \quad lines.\\ Here\quad in\quad each\quad of\quad the\quad figures\quad 1,\quad 2,\quad 5,\quad 6,\quad 7\quad a\quad single\quad area\\ is\quad enclosed.\\ But\quad in\quad each\quad of\quad the\quad figures\quad 3,\quad 4,\quad 8\quad more\quad than\quad one\quad area\\ are\quad enclosed.\\ So\quad each\quad of\quad the\quad figures\quad 1,\quad 2,\quad 5,\quad 6,\quad 7\quad is\quad a\quad simple\quad curve.\\ Ans-\quad 1,\quad 2,\quad 5,\quad 6,\quad 7 $$
  • Question 2
    1 / -0
    Examine the table. (Each figure is divided into triangles and the sum of the angles deduced from that)
    What can you say about the angle sum of a convex polygon with the number of sides (n) = 8?

    Solution
    $$ After\quad analysing\quad the\quad given\quad table\quad it\quad is\quad observed\quad that\quad when\\ (i)\quad numbre\quad of\quad sides\quad of\quad the\quad polygon=3\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \longrightarrow sum\quad of\quad the\quad internal\quad angles={ 180 }^{ o }=\left( 3-2 \right) \times { 180 }^{ o }\\ (ii)\quad numbre\quad of\quad sides\quad of\quad the\quad polygon=4\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \longrightarrow sum\quad of\quad the\quad internal\quad angles={ 360 }^{ o }=\left( 4-2 \right) \times { 180 }^{ o }\\ (iii)\quad numbre\quad of\quad sides\quad of\quad the\quad polygon=5\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \longrightarrow sum\quad of\quad the\quad internal\quad angles={ 540 }^{ o }=\left( 5-2 \right) \times { 180 }^{ o }\\ (iv)\quad numbre\quad of\quad sides\quad of\quad the\quad polygon=6\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \longrightarrow sum\quad of\quad the\quad internal\quad angles={ 720 }^{ o }=\left( 6-2 \right) \times { 180 }^{ o }\\ \therefore \quad By\quad induction,\quad it\quad can\quad be\quad concluded\quad that\\ When\quad the\quad numbre\quad of\quad sides\quad of\quad the\quad polygon=n\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \longrightarrow sum\quad of\quad the\quad internal\quad angles=\left( n-2 \right) \times { 180 }^{ o }\\ \therefore \quad For\quad a\quad 8\quad sided\quad polygon\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad sum\quad of\quad the\quad internal\quad angles=\left( 8-2 \right) \times { 180 }^{ o }={ 1080 }^{ o }\\ Ans-(i)\quad If\quad the\quad numbre\quad of\quad sides\quad of\quad a\quad polygon=n\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \longrightarrow sum\quad of\quad the\quad internal\quad angles=\left( n-2 \right) \times { 180 }^{ o }\\ \quad \quad \quad \quad (ii){ 1080 }^{ o }\\ \\ \\ \\ \\ \\  $$
  • Question 3
    1 / -0
    Identify the number of convex polygons from the given figures. 

    Solution
    In a convex polygon, none of the internal angles is a reflex angle. Instead, all the internal angles are less than $$180^{\circ}$$. 
    Hence, Figure 2 is the only convex polygon.
  • Question 4
    1 / -0
    Find the unknown angle $$x$$ in the above figure.

    Solution
    The given figure is a regular pentagon since it has $$5$$ sides and all are equal 
    We know that the sum of the internal angles $${ S }_{ n }$$ of an $$n$$ sided convex polygon is $$\left( n-2 \right) \times { 180 }^{ o }$$
    Here $$n=5,$$ i.e $${ S }_{ n }=\left( 5-2 \right) \times { 180 }^{ o }={ 540 }^{ o }.......(i)$$
    In a regular polygon, all the sides are equal and all the angles are equal to each other
    $$\therefore 5x=540^{o}$$
    $$\Rightarrow x=108^{o}$$
  • Question 5
    1 / -0
    Diagonals of a parallelogram are perpendicular to each other. Is this statement true?

    Solution

    There are six general and important properties of parallelograms to know:

    There are six important properties of parallelograms to know:

    Opposite sides are congruent (AB = DC).

    Opposite angels are congruent (D = B).

    Consecutive angles are supplementary (A + D = 180°).

    If one angle is right, then all angles are right.

    The diagonals of a parallelogram bisect each other.

    Each diagonal of a parallelogram separates it into two congruent triangles.

    These properties does not say anything about angle between diagonals . So diagonals $$may$$ $$be$$ perpendicular $$may$$ $$be$$ $$not$$.

    Special type of parallelogram with perpendicular diagonals are square and rhombus.

    So correct answer is option is C 

  • Question 6
    1 / -0
    Identify the number of concave polygons from the given figures?

    Solution
    In a concave polygon, at least one of the internal angles is a reflex angle i.e greater than 180.
        So, figure 1 is the only concave polygon.
  • Question 7
    1 / -0
    If the diagonals $$AC$$ and $$BD$$ of a quadrilateral $$ABCD$$ bisect each other, then $$ABCD$$ is :
    Solution



    Parallelogram .

    The diagonals (lines linking opposite corners) of parallelogram bisect each other. Each diagonal cuts the other into two equal parts.

  • Question 8
    1 / -0
    In the following figure, $$ABCD$$ is a parallelogram. Find the value of $$x$$

    Solution
    $$
    Given\quad that\quad ABCD\quad is\quad a\quad parallelogram.\\ We\quad know\quad that\quad in\quad a\quad parallelogram\quad opposite\quad angles\quad are\quad equal.\\ So\quad from\quad the\quad given\quad figure,\\ \angle B=\angle D\Rightarrow 6x+3y-8=7y\Rightarrow 6x-4y=8\Rightarrow x=\frac { 8+4y }{ 6 } \quad ----\left( 1 \right) \\ Also\quad we\quad know\quad that\quad adjacent\quad angles\quad in\quad a\quad parallelogram\quad are\quad supplementary.\\ So\quad \angle A+\angle D={ 180 }^{ o }\Rightarrow 4x+20+6x+3y-8={ 180 }^{ o }\Rightarrow 10x+3y=168\quad ----\left( 2 \right) \\ Using\quad 1\quad in\quad 2,\\ 10\left( \frac { 8+4y }{ 6 }  \right) +3y=168\Rightarrow 80+40y+18y=168\times 6\Rightarrow 58y=1008-80\Rightarrow 58y=928\Rightarrow y=\frac { 928 }{ 58 } \Rightarrow y={ 16 }^{ o }\\ Using\quad y=16\quad in\quad 1,\\ x=\frac { 8+4\times 16 }{ 6 } \Rightarrow x=\frac { 8+64 }{ 6 } \Rightarrow x=\frac { 72 }{ 6 } \Rightarrow x={ 12 }^{ o }\\ So\quad x={ 12 }^{ o }\quad \& \quad y={ 16 }^{ o }
    $$
  • Question 9
    1 / -0
    A curve which begins and ends at the same point is called a ____.
    Solution
    A curve which begins and ends at the same point is called a closed curve.
  • Question 10
    1 / -0
    Which of the following alphabet represents a closed curve?
    Solution
    In simple closed curves, the shapes are closed by line-segments or by a curved line.

    Triangle, quadrilateral, circle, etc., are examples of closed curves.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now