Self Studies
Selfstudy
Selfstudy

Cubes and Cube Roots Test - 14

Result Self Studies

Cubes and Cube Roots Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the value of: $$\displaystyle \sqrt[3]{-216}$$.
    Solution

    On prime factorising, we get,

    $$216=\underline{3\times 3\times 3}\times \underline{2\times 2\times 2}$$

              $$=3^3\times 2^3=6^3$$.

    Then, $$-216$$ $$=(-6)^3$$.

    Therefore, cube root of $${-216}$$,

    i.e. $$\sqrt[3]{-216}=\sqrt[3]{(-6)^3}= -6$$.

    Therefore, option $$A$$ is correct.

  • Question 2
    1 / -0
    Find the value of: $$\displaystyle \sqrt[3]{9261}$$.
    Solution

    On prime factorising, we get,

    $${9261}=\underline{3\times 3\times 3}\times \underline{7\times 7\times 7}=3^3 \times 7^3 $$.


    Then, value of $$\sqrt[3]{9261}$$ is:

    $$\sqrt[3]{9261}=\sqrt[3]{3^3\times 7^3}= 3 \times 7=21$$.


    Therefore, option $$B$$ is correct.

  • Question 3
    1 / -0
    Which symbol denotes cube root?
    Solution
    The symbol used to denote the cube root of a number is $$\displaystyle \sqrt [3]{}$$.
    Hence, option $$A$$ is correct.
  • Question 4
    1 / -0
    Find the cube root of $$-3375$$.
    Solution

    On prime factorising, we get,

    $$3375=\underline{3\times 3\times 3}\times \underline {5\times5\times5}$$ $$=3^3 \times 5^3=15^3$$.

    Then, $$-3375$$ $$=(-15)^3$$.

    Therefore, value of $$\sqrt[3]{-3375}$$ is:

    $$\sqrt[3]{-3375}=\sqrt[3]{(-15)^3}= -15$$.

    Therefore, option $$B$$ is correct.

  • Question 5
    1 / -0
    Write the units digit of the cube for $$71$$.71
    Solution
    Given, the number is $$71$$.
    Here, the units digit is $$1$$.
    We know, the cube of $$1$$, i.e. $$1^3=1$$, whose units place is $$1$$.
    Therefore, the units digit of the cube of $$71$$ is $$1$$.
    Hence, option $$A$$ is correct.
  • Question 6
    1 / -0
    Find the cube roots of : $$-1$$.
    Solution


    $${\textbf{Step -1: Given, number is  - 1.}}$$

                   $${\text{As we know that, prime factorization of 1 is,}}$$

                   $$1 = 1 \times 1 \times 1 = {1^3}$$

                   $${\text{So, prime factorization of  - 1 will be,}}$$

                   $$ - 1 = \left( { - 1} \right) \times \left( { - 1} \right) \times \left( { - 1} \right) = {\left( { - 1} \right)^3}$$

                   $$ \Rightarrow  - 1 = {\left( { - 1} \right)^3}$$

    $${\textbf{Step -2: Taking cube root on both sides}}$$

                   $$ \Rightarrow \sqrt[3]{{ - 1}} = \sqrt[3]{{{{\left( { - 1} \right)}^3}}} =  - 1.$$

                   $${\text{Thus, cube root of  - 1 is  - 1}}{\text{.}}$$ 

    $${\textbf{ Hence, Option (B)}}{\textbf{  -1, is correct answer.}}$$

  • Question 7
    1 / -0
    Find the cube root of: $$-216$$.
    Solution

    On prime factorising, we get,

    $$216=\underline{3\times 3\times 3}\times \underline{2\times 2\times 2}$$

              $$=3^3\times 2^3=6^3$$.

    Then, $$-216$$ $$=(-6)^3$$.

    Therefore, cube root of $${-216}$$ is:

    $$\sqrt[3]{-216}=\sqrt[3]{(-6)^3}= -6$$.

    Therefore, option $$D$$ is correct.

  • Question 8
    1 / -0
    Find the smallest number by which $$8575$$ must be multiplied so that the product is a perfect cube.
    Solution

    Prime factorising $$8575$$, we get,

    $$8575= 5 \times 5 \times 7 \times 7 \times 7 $$

              $$= 5^2 \times 7 ^3$$.

    We know, a perfect cube has multiples of $$3$$ as powers of prime factors.

    Here, number of $$5$$'s is $$2$$ and number of $$7$$'s is $$3$$.

    So we need to multiply another $$7$$ to the factorization to make $$8575$$ a perfect cube.

    Hence, the smallest number by which $$8575$$ must be multiplied to obtain a perfect cube is $$5$$.

    Hence, option $$C$$ is correct.

  • Question 9
    1 / -0
    $$\displaystyle \sqrt[3]{-512}=$$?
    Solution

    On prime factorising, we get,

    $$512=\underline{2\times 2\times 2}\times \underline{2\times 2\times 2}\times \underline {2\times2\times2}$$

           $$=2^3\times 2^3\times 2^3=8^3$$.

    Then, $$-512$$ $$=(-8)^3$$.

    Therefore, cube root of $${-512}$$,

    i.e. $$\sqrt[3]{-512}=\sqrt[3]{(-8)^3}= -8$$.

    Therefore, option $$B$$ is correct.

  • Question 10
    1 / -0
    Write the units digit of the cube of $$4276$$.
    Solution

    Given, the number is $$4276$$.

    Here, the units digit is $$6$$.

    We know, the cube of $$6$$, i.e. $$6^3=216$$, whose units place is $$6$$.

    Therefore, the units digit of the cube of $$4276$$ is $$6$$.

    Hence, option $$A$$ is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now