Self Studies
Selfstudy
Selfstudy

Cubes and Cube Roots Test - 18

Result Self Studies

Cubes and Cube Roots Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$5832$$ is an example of _____ of the number $$18.$$
    Solution
    Prime factorising $$5832$$, we get,
    $$5832$$ $$=(2\times2\times2)\times(3\times3\times3)\times(3\times3\times3)\\=2^3\times 3^3\times 3^3\\=18^3.$$

    $$\therefore$$ $$5832$$ is the cube of number $$18$$.

    Hence, option $$B$$ is correct.
  • Question 2
    1 / -0
    $$\sqrt[3]{4\dfrac{12}{125}} =$$?
    Solution
    Simplifying, $$\sqrt[3]{4\dfrac{12}{125}}=\sqrt[3]{\dfrac{512}{125}}$$.

    On prime factorisation of the numbers individually, we get,

    $$512=\underline { 2 \times 2 \times 2 } \times \underline { 2 \times 2 \times 2 } \times \underline { 2 \times 2 \times 2 }$$

    $$=2^3 \times 2^3 \times 2^3=8^3$$.


    $$125=\underline { 5 \times 5 \times 5 }$$ $$ =5^3$$.


    Therefore,

    $$\sqrt[3]{4\dfrac{12}{125}}=\sqrt[3]{\dfrac{512}{125}}$$

    $$=\sqrt[3]{\dfrac{8^3}{5^3}}={\dfrac{8}{5}}$$ $$={1\dfrac{3}{5}}$$.


    Hence, option $$B$$ is correct.

  • Question 3
    1 / -0
    Find the smallest number by which the number $$108$$ must be multiplied to obtain a perfect cube.
    Solution
    Prime factorising $$108$$, we get,

    $$108=3\times 3\times 3\times 2\times 2$$

           $$= 3 ^3 \times 2 ^2$$.

    We know, a perfect cube has multiples of $$3$$ as powers of prime factors.

    Here, number of $$3$$'s is $$3$$ and number of $$2$$'s is $$2$$.

    So we need to multiply another $$2$$ to the factorization to make $$108$$ a perfect cube.

    Hence, the smallest number by which $$108$$ must be multiplied to obtain a perfect cube is $$2$$.

    Hence, option $$A$$ is correct.

  • Question 4
    1 / -0
    From which of the following options, the perfect cube cannot end with?
    Solution
    We know, the number of zeroes at the end of a number must be in multiples of three for it to be a perfect cube.
    Here, only option $$A$$ has number of zeros not equal to the multiple of $$3$$.
    Hence, option $$A$$ is correct.
  • Question 5
    1 / -0
    The product $$864 \times n$$ is a perfect cube. What is the smallest possible value of n ?
  • Question 6
    1 / -0
    The cube of a number is 8 times the cube of another number. If the sum of the cubes of numbers is 243, then what is the difference of the numbers?
  • Question 7
    1 / -0
    Simplify: $$\displaystyle \sqrt[3]{\frac{1}{8}\times \frac{125}{64}}$$.
    Solution

    On prime factorisation of the numbers individually, we get,

    $$8=\underline { 2 \times 2 \times 2 }$$

    $$125=\underline { 5 \times 5 \times 5 }$$

    $$ \Rightarrow \sqrt [ 3 ]{ 125 } =5$$.


    $$64=\underline { 2 \times 2 \times 2 } \times \underline { 2 \times 2 \times 2 }$$

    $$ \Rightarrow \sqrt [ 3 ]{ 64 } =2 \times 2=4$$.


    Then,
    $$\sqrt[3]{\cfrac{1}{8}\times \cfrac{125}{64}}=\sqrt[3]{\cfrac{1}{8}}\times \sqrt[3]{\cfrac{125}{64}}=\cfrac{\sqrt[3]{1}}{\sqrt[3]{8}}\times \cfrac{\sqrt[3]{125}}{\sqrt[3]{64}}$$
    $$=\cfrac{1}{2}\times \cfrac{5}{4}=\cfrac{5}{8}$$.

    Hence, option $$A$$ is correct.
  • Question 8
    1 / -0
    The smallest number by which $$8788$$ must be divided so that the quotient is a perfect cube is _______.
    Solution
    $$\textbf{Step 1: Find the required number.}$$

                    $$\text{Prime factorising $$8788$$, we get,}$$

                    $$ 8788 = 2 \times 2 \times 13 \times 13 \times 13$$

                              $$= 2 ^ 2 \times 13 ^ 3$$

                    $$\text{We know, a perfect cube has prime factors as a group of $$3$$ .}$$

                    $$\text{Here, number of $$2$$'s is $$2$$ and number of $$13$$'s is $$3$$.}$$

                    $$\text{So we need to divide $$8788$$ by } 2^2 \text{  to make it a perfect cube.}$$

                    $$\text{Hence, the smallest number by which $$8788$$ must be divided to obtain a perfect cube is}$$ $$2^2=4$$

    $$\textbf{Hence, option $$A$$ is correct.}$$
  • Question 9
    1 / -0
    $$\displaystyle \sqrt[3]{333+\sqrt[3]{987+\sqrt[3]{2197}}}$$ is equal to:
    Solution
    $$\sqrt [ 3 ]{ 333+\sqrt [ 3 ]{ 987+\sqrt [ 3 ]{ 2197 }  }  } $$
    $$=\sqrt [ 3 ]{ 333+\sqrt [ 3 ]{ 987+\sqrt [ 3 ]{ 13\times 13\times 13 }  }  } $$          ...[Since, $$2197=13 \times 13 \times 13$$]
    $$=\sqrt [ 3 ]{ 333+\sqrt [ 3 ]{ 987+13 }  } $$
    $$=\sqrt [ 3 ]{ 333+\sqrt [ 3 ]{ 1000 }  } $$
    $$=\sqrt [ 3 ]{ 333+\sqrt [ 3 ]{ 10 \times 10\times 10 }  } $$          ...[Since, $$1000=10 \times 10 \times 10$$]
    $$=\sqrt [ 3 ]{ 333+10 } $$
    $$=\sqrt [ 3 ]{ 343 } $$
    $$=\sqrt [ 3 ]{ 7\times 7\times 7 } $$          ...[Since, $$343=7 \times 7\times 7$$]
    $$=7$$.

    Hence, option $$C$$ is correct.
  • Question 10
    1 / -0
    Cube of $$\displaystyle \left(\frac{1}{5}\right)$$ is: 
    Solution
    Cube of $$\displaystyle \left(\frac{1}{5}\right)$$:
     $$\displaystyle \left(\frac{1}{5}\right)^3$$ $$=\displaystyle \frac{1}{5}\times\frac{1}{5}\times\frac{1}{5}=\frac{1}{125}$$.
    Hence, option $$D$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now