Self Studies
Selfstudy
Selfstudy

Cubes and Cube Roots Test - 20

Result Self Studies

Cubes and Cube Roots Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The cube root of $$1.331$$ is:
    Solution
    $$\textbf{Step 1: Find the cube root.}$$

                    $$\text{To find the cube root of 1.331.}$$
                    $$\text{Prime factorising 1.331, we get,}$$

                    $$\mathrm{1.331=\dfrac{1331}{1000}}$$

                               $$\mathrm{=\dfrac{11}{10}\times\dfrac{11}{10}\times\dfrac{11}{10}}$$

                               $$\mathrm{=1.1\times1.1\times1.1}$$


                    $$\mathrm{\therefore\sqrt[3]{1.331}=\sqrt[3]{1.1\times1.1\times1.1}}$$
                                       $$\mathrm{=1.1}$$

    $$\textbf{Hence, the correct option is D.}$$
  • Question 2
    1 / -0
    Find the cube root of $$175616$$ by prime factorization method.
    Solution

    On prime factorisation of $$175616$$, we get,

    $$ 175616= 2\times2\times2\times2\times2\times2\times2\times2\times2\times7\times7\times7$$

                  $$  = 8\times8\times8\times7\times7\times7$$

                  $$= 8^3 \times 7^3$$.


    Then, cube root of $$175616$$ is:

    $$\sqrt[3]{175616}=\sqrt[3]{8^3 \times 7^3}$$

                     $$= 8\times 7\times$$

                     $$=56$$

    Therefore, option $$A$$ is correct.

  • Question 3
    1 / -0
    By what number $$4320$$ must be multiplied to obtain a number which is a perfect cube?
    Solution

    Prime factorising $$4320$$, we get,

    $$ 4320 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5$$

              $$= 2 ^5 \times 3 ^3 \times 5^1$$.

    We know, a perfect cube has multiples of $$3$$ as powers of prime factors.

    Here, number of $$2$$'s is $$5$$, number of $$3$$'s is $$3$$ and number of $$5$$'s is $$1$$.

    So we need to multiply another $$2$$, and $$5^2$$ in the factorization to make $$4320$$ a perfect cube.

    Hence, the smallest number by which $$4320$$ must be multiplied to obtain a perfect cube is $$2\times 5^2=50$$.

    Hence, option $$C$$ is correct.

  • Question 4
    1 / -0
    Is $$1188$$ a perfect cube? If not, by which smallest natural number should it be divided so that the quotient is a perfect cube?
    Solution

    Prime factorising $$1188$$, we get,

    $$1188 = 2 \times 2 \times 3 \times 3 \times 3 \times 11$$

              $$= 2^2 \times 3^3 \times 11 $$.

    We know, a perfect cube has multiples of $$3$$ as powers of prime factors.

    Here, number of $$2$$'s is $$2$$, number of $$3$$'s is $$3$$ and number of $$11$$'s is $$1$$.

    So we need to divide $$2^2$$ and $$11$$ from the factorization to make $$1188$$ a perfect cube.

    Hence, the smallest number by which $$1188$$ must be divided to obtain a perfect cube is $$2^2 \times 11 = 44$$.

    Therefore, option $$A$$ is correct.
  • Question 5
    1 / -0
    Find the cubic root of the following number by prime factorisation method: $$27000$$.
    Solution

    On prime factorising, we get,

    $$27000 = 2\times2\times2\times5\times5\times5\times3\times3\times3$$

               $$= 2^3\times5^3\times3^3$$.


    Then, cube root of $$27000$$ is:

    $$\sqrt[3]{27000}=\sqrt[3]{3^3 \times 5^3 \times 2^3}= 3\times5\times2=30$$.

    Therefore, $$30$$ is the required solution.

    Hence, option $$A$$ is correct.

  • Question 6
    1 / -0
    Find the cube root of the following number by prime factorization method: $$91125$$.
    Solution

    On prime factorising, we get,

    $$91125=(5 \times 5\times 5)\times (3\times3\times3)\times(3\times3\times3)$$

                $$= 5^3 \times 3^3 \times 3^3$$.

    Then, cube root of $$91125$$ is:

    $$\sqrt[3]{91125}=\sqrt[3]{5^3 \times 3^3 \times 3^3 }=5\times 3\times 3=45$$.

    Therefore, option $$A$$ is correct.

  • Question 7
    1 / -0
    The cube root of $$ \displaystyle -\frac{125}{1331} $$ is:
    Solution

    On prime factorisation of the numbers individually, we get,

    $$125=\underline { 5 \times 5 \times 5 }=5^3$$.


    $$1331=\underline { 11 \times 11 \times 11 }=11^3$$.


    Then, cube root of $$-\dfrac{125}{1331}$$ is:

    $$ \displaystyle \sqrt [ 3 ]{-\dfrac{125}{1331}}$$ $$ =\displaystyle \sqrt [ 3 ]{-\dfrac{5^3}{11^3}}$$ $$ =\displaystyle \sqrt [ 3 ]{(-\dfrac{5}{11})^3}$$ $$= \displaystyle {-\dfrac{5}{11}}$$.


    Thus, option $$B$$ is correct.

  • Question 8
    1 / -0
    Evaluate: $$\sqrt [ 3 ]{ \cfrac { 216 }{ 2197 }  } $$.
    Solution

    On prime factorisation of the numbers individually, we get,

    $$ 216=\underline { 2 \times 2 \times 2 } \times \underline { 3 \times 3 \times 3 }=2^3\times 3^3=6^3$$.

    $$2197=\underline { 13 \times 13 \times 13 }=13^3$$.


    Then,
    $$\sqrt[3]{\dfrac{216}{2197}}$$ $$=\sqrt[3]{\dfrac{6^3}{13^3}}=\dfrac{6}{13}$$.

    Hence, option $$A$$ is correct.
  • Question 9
    1 / -0
    Write the cube root of $$ \displaystyle \frac{27}{125} $$.
    Solution

    On prime factorisation of the numbers individually, we get,

    $$ 27=\underline { 3 \times 3 \times 3 }=3^3$$.

    $$125=\underline { 5 \times 5 \times 5 }=5^3$$.

    Therefore, cube root of $$\dfrac{27}{125}$$ is:

    $$ \displaystyle {\sqrt [ 3 ]{ \dfrac{27}{125}}=\sqrt [ 3 ]{ \dfrac{3^3}{5^3}}=\dfrac{3}{5}} $$.


    Therefore, option $$A$$ is correct.

  • Question 10
    1 / -0
    Evaluate: $$\sqrt [ 3 ]{ 216\times (-343) } $$.
    Solution

    On prime factorising, we get,

    $$216=\underline{6\times 6\times 6}$$ $$=6^3$$.

    $$343=\underline{7\times 7\times 7}$$ $$=7^3$$.

    Then, $$-343$$ $$=(-7)^3$$.


    Therefore, value of $$\sqrt[3]{216\times(-343)}$$ is:

    $$\sqrt[3]{6^3\times(-7)^3}=6\times(-7)=-42$$.

    Therefore, option $$B$$ is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now