Self Studies
Selfstudy
Selfstudy

Cubes and Cube Roots Test - 22

Result Self Studies

Cubes and Cube Roots Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$ \displaystyle \sqrt[3]{(12167 \times 1728)} = $$?
    Solution

    Given, to find $$\sqrt[3]{12167\times 1728}$$.


    Prime factorising, we get,

    $$12167= 23\times23\times23=23^3$$

    and $$1728$$ $$= 2\times2\times2\times2\times2\times2\times3\times3\times3 \\ =2^3 \times 2^3 \times 3^3.$$


    Then,

    $$\sqrt[3]{12167\times 1728}$$

    $$= \sqrt[3]{23^3}\times \sqrt[3]{2^3 \times 2^3 \times 3^3}$$.

    $$= 23\times2\times2\times 3$$

    $$= 276$$.


    Hence, option $$A$$ is correct.

  • Question 2
    1 / -0
    Find the smallest numbers by which $$11979$$ must be multiplied so that the product is a perfect cube.
    Solution

    Prime factorising $$11979$$, we get,

    $$ 11979 = 3 \times 3 \times 11 \times 11 \times 11$$

                $$= 3^2 \times 11 ^3$$.

    We know, a perfect cube has multiples of $$3$$ as powers of prime factors.

    Here, number of $$3$$'s is $$2$$ and number of $$11$$'s is $$3$$.

    So we need to multiply another $$3$$ to the factorization to make $$11979$$ a perfect cube.

    Hence, the smallest number by which $$11979$$ must be multiplied to obtain a perfect cube is $$3$$.

    Hence, option $$D$$ is correct.

  • Question 3
    1 / -0
    Write the units digit of the cube for $$388$$.
    Solution

    Given, the number is $$388$$.

    Here, the units digit is $$8$$.

    We know, the cube of $$8$$, i.e. $$8^3=512$$, whose units place is $$2$$.

    Therefore, the units digit of the cube of $$388$$ is $$2$$.

    Hence, option $$C$$ is correct.

  • Question 4
    1 / -0
    Find the smallest number by which $$243$$ must be multiplied, so that the product is a perfect cube.
    Solution
    $$\displaystyle 243=3\times 3\times 3\times 3\times 3$$
    $$\displaystyle =\left( { 3 }^{ 3 }\times { 3 }^{ 2 } \right) ={ \left( 3 \right)  }^{ 3 }\times { 3 }^{ 2 }$$
    In this factorization there is no triplet for $$3.$$
    So, $$243$$ is not a perfect cube.
    $$\displaystyle \therefore $$ $$243$$ has to be multiplied by $$3$$ to make it a perfect cube.
  • Question 5
    1 / -0
    Simplify: $$ \sqrt[3]{\dfrac {216}{2197}}$$.
    Solution
    On prime factorisation of the numbers individually, we get,

    $$ 216=\underline { 2 \times 2 \times 2 } \times \underline { 3 \times 3 \times 3 }=2^3 \times 3^3 =6^3$$.


    $$2197=\underline { 13 \times 13 \times 13 } =13^3 $$.


    Therefore,

    $$ \  \sqrt[3] {\cfrac {216}{2197}}$$$$= \cfrac {\sqrt[3]{216}} {\sqrt[3]{2197}} $$ $$=\cfrac {\sqrt[3]{ 6^3}}{ \sqrt[3]{13^3}} $$ $$=\dfrac {6}{13}.$$


    Thus, option $$C$$ is correct.

  • Question 6
    1 / -0
    Write the units digit of the cube for $$109$$.
    Solution

    Given, the number is $$109$$.

    Here, the units digit is $$9$$.

    We know, the cube of $$9$$, i.e. $$9^3=729$$, whose units place is $$9$$.

    Therefore, the units digit of the cube of $$109$$ is $$9$$.

    Hence, option $$C$$ is correct.

  • Question 7
    1 / -0
    Write the units digit of the cube for $$77774$$.
    Solution

    Given, the number is $$77774$$.

    Here, the units digit is $$4$$.

    We know, the cube of $$4$$, i.e. $$4^3=64$$, whose units place is $$4$$.

    Therefore, the units digit of the cube of $$77774$$ is $$4$$.

    Hence, option $$A$$ is correct.

  • Question 8
    1 / -0
    Find the cube of: 819
    Solution
    $$\displaystyle 819=3\times 3\times 7\times 13$$

    $$\Rightarrow$$ $$\displaystyle{ \left( 819 \right)  }^{ 3 }={ \left( 3 \right)  }^{ 3 }\times { \left( 3 \right)  }^{ 3 }\times { \left( 7 \right)  }^{ 3 }\times { \left( 13 \right)  }^{ 3 }$$

    $$\displaystyle =3\times 3\times 3\times 3\times 3\times 3\times 7\times 7\times 7\times 13\times 13\times 13$$

    $$\displaystyle =27\times 27\times 343\times 2197$$

    $$\displaystyle =549353259$$

    $$\displaystyle \therefore $$ The cube of $$819 = 549353259.$$
  • Question 9
    1 / -0
    Find the smallest number by which $$128$$ must be divided, so that the quotient is a perfect cube.
    Solution
    $$\displaystyle 128=2\times 2\times 2\times 2\times 2\times 2\times 2$$
    $$\displaystyle =\left( { 2 }^{ 3 }\times { 2 }^{ 3 }\times 2 \right) $$
    $$\displaystyle ={ \left( 2\times 2 \right)  }^{ 3 }\times 2$$
    In the above factorization there is no triplet for $$2$$.
    So, $$128$$ is not a perfect cube.
    Therefore, $$\displaystyle $$ $$128$$ must be divided by $$2$$ to make the quotient a perfect cube.
  • Question 10
    1 / -0
    Find the smallest number by which $$72$$ must be multiplied, so that the product is a perfect cube.
    Solution
    $$\displaystyle 72=2\times 2\times 2\times 3\times 3$$
    $$\displaystyle =\left( { 2 }^{ 3 }\times { 3 }^{ 2 } \right) ={ \left( 2 \right)  }^{ 3 }\times 3^{2}$$
    In this factorisation there is no triplet for $$3$$.
    So, $$72$$ is not a perfect cube.
    Therefore, $$\displaystyle $$ $$72$$ has to be multiplied by $$3$$ to make it a perfect cube.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now