Self Studies
Selfstudy
Selfstudy

Cubes and Cube Roots Test - 27

Result Self Studies

Cubes and Cube Roots Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the value of $$\displaystyle \sqrt [ 3 ]{ 27 } \times \sqrt [ 3 ]{ -27 } $$ ?
    Solution

    On prime factorising, we get,

    $$27=\underline{3\times 3\times3}$$ $$=3^3$$.

    Then, $$-27$$ $$=(-3)^3$$.


    Therefore, value of $$\sqrt[3]{27}\times\sqrt[3]{-27}$$ is:

    $$\sqrt[3]{27}\times\sqrt[3]{-27}$$

    $$=\sqrt[3]{3^3}\times\sqrt[3]{(-3)^3}$$

    $$=3\times(-3)=-9$$.

    Therefore, option $$A$$ is correct.

  • Question 2
    1 / -0
    How many consecutive odd numbers are needed to make sum as $$\displaystyle { 13 }^{ 3 }$$ ?
    Solution
    We know,
    $$\displaystyle 1=1={ 1 }^{ 3 }$$,
    $$\displaystyle 3+5=8={ 2 }^{ 3 }$$,
    $$\displaystyle 7+9+11=27={ 3 }^{ 3 }$$,
    $$\displaystyle 13+15+17+19=64={ 4 }^{ 3 }$$,
    $$\displaystyle 21+23+25+27+29=125={ 5 }^{ 3 }$$,
    $$\displaystyle 31+33+35+37+39+41=216={ 6 }^{ 3 }$$,
    $$\displaystyle 43+45+47+49+51+53+55=343={ 7 }^{ 3 }$$,
    $$\displaystyle 57+59+61+63+65+67+69+71=512={ 8 }^{ 3 }$$,
    $$\displaystyle 73+75+77+79+81+83+85+87+89=729={9 }^{ 3 }$$,
    $$\displaystyle 91+93+95+97+99+101+103+105+107+109=1000={ 10 }^{ 3 }$$,
    $$\displaystyle 111+113+115+117+119+121+123+125+127+129+131=1331={ 11 }^{ 3 }$$,
    $$\displaystyle 133+135+137+139+141+143+145+147+149+151+153+155=1728={ 12 }^{ 3 }$$,
    $$\displaystyle 157+159+161+163+165+167+169+171+173+175+177+179+181=2197={ 13 }^{ 3 }$$.

    $$\displaystyle \therefore $$ $$13$$ consecutive odd numbers are required to obtain the sum as $$13^3$$.

    Hence, option $$B$$ is correct.
  • Question 3
    1 / -0
    Find the smallest number which should be multiplied to $$231525$$ to make it a perfect cube.
    Solution

    Prime factorising $$231525$$, we get,

    $$231525= 3 \times 3 \times 3 \times 5 \times 5 \times 7 \times 7 \times 7$$

                 $$= 3^3 \times 5^2 \times 7^3$$.

    We know that a perfect cube number has its factor with an exponent as multiples of $$3.$$

    Here, exponent of $$3$$'s is $$3$$, exponent of $$5$$'s is $$2$$ and exponent of $$7$$'s is $$3$$.

    So we need to multiply another $$5$$ to the factorization to make $$2,31,525$$ a perfect cube.

    Hence, the smallest number by which $$2,31,525$$ must be multiplied to obtain a perfect cube is $$5$$.

    Hence, option $$A$$ is correct.

  • Question 4
    1 / -0
    What is the value of cube root of $${ 4913 }$$ ? 
    Use estimation method to find the cube root.
    Solution

    Step $$I$$ : Form groups of $$3$$ starting from right most digit of $$4913$$, i.e. $$\displaystyle \overline { 4 }\: \overline { 913 } $$

    Then, the two groups are $$4$$ and $$913.$$

    Here, $$4$$ has only $$1$$ digit and $$913$$ has $$3$$ digits.


    Step $$II$$ : Take $$913$$

    Digit in unit place $$= 3$$

    Therefore, we take one's place of required cube root as $$7$$ .... [Since, $$7^3=343$$]


    Step $$III$$ : Now, take the other group $$4$$

    We search for the largest cube number which is less than the number in the second group.

    Number in the second group is $$4$$

    And also, we know, $$1 \leq 4 < 8$$

    $$\Rightarrow 1^3 \leq 4 < 2^3$$

    Here, the smallest number among $$1$$ and $$2$$ is $$1$$

    Therefore, we take $$1$$ as ten's place.

    $$\displaystyle \therefore \quad \sqrt[3] { 4913 } =17$$


    Hence, option $$D$$ is correct.

  • Question 5
    1 / -0
    Cube of $$1.3$$ is:
    Solution
    $$\displaystyle { 1.3 }^{ 3 }$$

    $$=\dfrac { 13\times 13\times 13 }{ 10\times 10\times 10 }$$

    $$ =\dfrac { 2197 }{ 1000 }$$ 

    $$=2.197$$
  • Question 6
    1 / -0
    Find the smallest number which should be multiplied to $$1352$$ to get a perfect cube.
    Solution

    By prime factorising $$1352$$, 

    we get, $$ 1352 = 2 \times 2 \times 2 \times 13 \times 13$$

                            $$= 2 ^3 \times 13 ^2$$

    We know, a perfect cube has multiples of $$3$$ as powers of prime factors.

    Here, number of $$2$$'s is $$3$$ and number of $$13$$'s is $$2$$.

    So we need to multiply another $$13$$ to the factorization to make $$1352$$ a perfect cube.

    Hence, the smallest number by which $$1352$$ must be multiplied to obtain a perfect cube is $$13$$.

  • Question 7
    1 / -0
    What is the value of $$\displaystyle \sqrt [ 3 ]{ -8 } -\sqrt [ 3 ]{ -216 } $$?
    Solution

    On prime factorisation of the numbers individually, we get,

    $$ 216=\underline { 2 \times 2 \times 2 } \times \underline { 3 \times 3 \times 3 }=2^3\times3^3=6^3$$.

    $$ \Rightarrow { -216 } =(-6)^3 $$.

    $$8=\underline { 2 \times 2 \times 2 } =2^3$$

    $$ \Rightarrow { -8 } =(-2)^3$$.

    Therefore,

    $$\sqrt[3]{-8}-\sqrt[3]{-216}$$ $$=\sqrt[3]{(-2)^3}-\sqrt[3]{(-6)^3}=(-2)-(-6)=-2+6=4$$.

    Thus, option $$C$$ is correct.

  • Question 8
    1 / -0
    What is the value of $$\displaystyle \sqrt [ 3 ]{ 64 } \div \sqrt [ 3 ]{ -64 } $$ ?
    Solution

    On prime factorising, we get,

    $$64=\underline{4\times 4\times4}$$ $$=4^3$$.

    Then, $$-64$$ $$=(-4)^3$$.

    Therefore, value of $$\sqrt[3]{64}\div\sqrt[3]{-64}$$ is:

    $$\sqrt[3]{64}\div\sqrt[3]{-64}$$

    $$=\sqrt[3]{4^3}\div\sqrt[3]{(-4)^3}$$

    $$=4\div(-4)=-1$$.

    Therefore, option $$A$$ is correct.

  • Question 9
    1 / -0
    Which odd number should be excluded to form a cube number?
    $$41 + 43 + 45 + 47 + 49 + 51 + 53 + 55$$
    Solution
    We know,
    $$\displaystyle 1=1={ 1 }^{ 3 }$$,
    $$\displaystyle 3+5=8={ 2 }^{ 3 }$$,
    $$\displaystyle 7+9+11=27={ 3 }^{ 3 }$$,
    $$\displaystyle 13+15+17+19=64={ 4 }^{ 3 }$$,
    $$\displaystyle 21+23+25+27+29=125={ 5 }^{ 3 }$$,
    $$\displaystyle 31+33+35+37+39+41=216={ 6 }^{ 3 }$$,
    $$\displaystyle 43+45+47+49+51+53+55=343={ 7 }^{ 3 }$$.
    Therefore, $$41$$ must be taken out to form a cube number, $$7^3=343$$.
    Hence, option $$D$$ is correct.
  • Question 10
    1 / -0
    Express the sum of odd consecutive cube number for $$6^3$$.
    Solution
    We know,
    $$\displaystyle 1=1={ 1 }^{ 3 }$$,
    $$\displaystyle 3+5=8={ 2 }^{ 3 }$$,
    $$\displaystyle 7+9+11=27={ 3 }^{ 3 }$$,
    $$\displaystyle 13+15+17+19=64={ 4 }^{ 3 }$$,
    $$\displaystyle 21+23+25+27+29=125={ 5 }^{ 3 }$$,
    $$\displaystyle 31+33+35+37+39+41=216={ 6 }^{ 3 }$$.
    Therefore, the sum of odd consecutive cube number for $$6^3=216$$ must be $$31+33+35+37+39+41$$.
    Hence, option $$C$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now