Self Studies

Algebraic Expressions and Identities Test - 19

Result Self Studies

Algebraic Expressions and Identities Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Multiply:
    $$ \frac{2}{3}ab $$ by $$ -\frac{1}{4}a^2b $$
    Solution
       $$\frac{2}{3}ab \times -\frac{1}{4}a^2b$$
    $$=\frac{2}{3}(-\frac{1}{4})a^{1+2}b^{1+1}$$
    $$=-\frac{2}{12}a^3b^2$$
  • Question 2
    1 / -0
    Multiply:
    $$ -5cd^2 $$  by $$-5cd^2 $$
    Solution
      $$-5cd^2 \times -5cd^2$$
    $$=(-5)(-5)c^{1+1}d^{2+2}$$
    $$=25c^2d^4$$
  • Question 3
    1 / -0
    Use the identity $$ (a+b)(a-b) = a^2-b^2$$ to evaluate:
    $$33\times 27 $$.
    Solution
    We know, $$ 33 \times 27 = (30 + 3) \times (30 - 3) $$ .

    Applying the formula $$ (a+b)(a-b) = { a }^{ 2 }-{ b }^{ 2 } $$, where $$ a = 30 , b = 3 $$,
    we get,
    $$ 33 \times 27 = (30 + 3) \times (30 - 3) = { 30 }^{ 2 }-{ 3 }^{ 2 } = 900 - 9 = 891 $$ .

    Therefore, option $$A$$ is correct.
  • Question 4
    1 / -0
    Use the identity $$ (a+b)(a-b) = a^2-b^2$$ to evaluate:
    $$21\times 19 $$.
    Solution
    We know, $$ 21 \times 19 = (20+ 1) \times (20 - 1) $$ .

    Applying the formula $$ (a+b)(a-b) = { a }^{ 2 }-{ b }^{ 2 } $$, where $$ a = 20 , b = 1 $$,
    we get,
    $$ 21 \times 19 = (20+ 1) \times (20 - 1) = { 20 }^{ 2 }-{ 1 }^{ 2 } = 400 - 1 = 399 $$ .
    Therefore, option $$B$$ is correct.
  • Question 5
    1 / -0
    Solve for $$x$$: $$(502)^{2}$$
    Solution
       $$(502)^2$$
    $$=(500+2)^2$$
    using, $$(a+b)^2=a^2+2ab+b^2$$
    $$=(500)^2+2(500)(2)+(2)^2$$
    $$=250000+2000+4$$
    $$=252004$$
  • Question 6
    1 / -0
    Use identities to evaluate: $$(101)^{2}$$
    Solution
       $$(101)^2$$
    $$=(100+1)^2$$
    using, $$(a+b)^2=a^2+2ab+b^2$$
    $$=(100)^2+2(100)(1)+1^2$$
    $$=10000+200+1$$
    $$=10201$$
  • Question 7
    1 / -0
    Use identities to solve: $$(97)^{2}$$
    Solution
      $$(97)^2$$
    $$=(100-3)^2$$
    using, $$(a-b)^2=a^2-2ab+b^2$$
    $$=(100)^2-2(100)3+(3)^2$$
    $$=10000-600+9$$
    $$=9409$$
  • Question 8
    1 / -0
    The product of $$\displaystyle\frac{2}{3}xy$$ and $$\dfrac{3}{2}xz$$ is equal to
    Solution
    $$\dfrac{2}{3} xy \times \dfrac{3}{2}xz$$ = $$x^2yz$$
  • Question 9
    1 / -0
    Simplify: $$\displaystyle { x }^{ 2 }\left( 3-{ 5y }^{ 2 } \right) +x\left( { xy }^{ 2 }-3x \right) -2y\left( y-{ 2x }^{ 2 }y \right) $$
    Solution
    We have to simplify $$\displaystyle { x }^{ 2 }\left( 3-{ 5y }^{ 2 } \right) +x\left( { xy }^{ 2 }-3x \right) -2y\left( y-{ 2x }^{ 2 }y \right) $$
    $$\displaystyle ={ 3x }^{ 2 }-{ 5x }^{ 2 }{ y }^{ 2 }+{ x }^{ 2 }{ y }^{ 2 }-{ 3x }^{ 2 }-{ 2y }^{ 2 }+{ 4x }^{ 2 }{ y }^{ 2 }$$
    $$\displaystyle =\left( { 3x }^{ 2 }-{ 3x }^{ 2 } \right) +\left( -{ 5x }^{ 2 }{ y }^{ 2 }+{ x }^{ 2 }{ y }^{ 2 }+{ 4x }^{ 2 }{ y }^{ 2 } \right) -{ 2y }^{ 2 }$$
    $$=\displaystyle 0-{ 2y }^{ 2 }=-{ 2y }^{ 2 }$$.
    Hence given expression simplified to $$-2y^2$$
  • Question 10
    1 / -0
    Find the product of  $$4p, 0$$
    Solution
      $$4p\times(0)$$
    $$=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now