Self Studies

Algebraic Expressions and Identities Test - 23

Result Self Studies

Algebraic Expressions and Identities Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Simplify the following: 
    $$(\sqrt{3}-\sqrt{2})^{2}$$ is equal to $$5-2\sqrt{6}$$.
     If true then enter $$1$$ and if false then enter $$0$$.
    Solution
    We know, $$(a-b)^{2}$$ = $$a^{2} + b^{2} - 2{a}{b}$$.

    Then, $$(\sqrt{3}-\sqrt{2})^{2}$$
    = $$(\sqrt{3})^{2} + (\sqrt{2})^{2} - 2\times\sqrt{3}\times\sqrt{2}$$
    = $$3 + 2 - 2\sqrt{6} $$
    = $$5 - 2\sqrt{6}$$.

    Hence, the statement is correct.
    Therefore, option $$A$$ is correct.
  • Question 2
    1 / -0
    Use the identity $$(x + a) (x + b) = x^2 + (a + b) x + ab$$ to find the given product:
    $$(2x + 5y)$$$$(2x + 3y)$$.
    Solution
    Given, $$(2x + 5y) (2x+3y)$$.

    We know, $$(x + a) (x + b) = x^2 + (a + b) x + ab$$.

    On comparing, we get,
    $$x=2x ,a=5y ,b=3y$$.

    Thus,
    $$(2x + 5y) (2x+3y)$$
    $$=(2x)^2+(5y+3y)2x+(5y)\times(3y)$$
    $$=4x^2+(8y)2x+15y^2$$
    $$=4x^2+16xy+15y^2$$.

    Hence, option $$C$$ is correct.
  • Question 3
    1 / -0
    Use the identity $$(x + a) (x + b) = x^2 + (a + b) x + ab$$ to find the given product:
    $$(xyz +4) (xyz +2)$$.
    Solution
    Given, $$(xyz+ 4) (xyz+2)$$.

    We know, $$(x + a) (x + b) = x^2 + (a + b) x + ab$$.

    On comparing, we get,
    $$x=xyz ,a=4 ,b=2$$.

    Thus,
    $$(xyz+4) (xyz+2)$$
    $$=(xyz)^2+(4+2)xyz+4\times 2$$
    $$=x^2y^2z^2+6xyz+8$$.

    Therefore, option $$C$$ is correct.
  • Question 4
    1 / -0
    Use the identity $$(x + a) (x + b) = x^2 + (a + b) x + ab$$ to find the given product:
    $$(4x-5)$$$$ (4x-1)$$.
    Solution
    Given, $$(4x- 5) (4x -1)$$.

    We know, 
    $$(x + a) (x + b) = x^2 + (a + b) x + ab$$.

    On comparing, we get,
    $$x=4x ,a=-5 ,b=-1$$.

    Thus,
    $$=(4x- 5) (4x -1)$$
    $$=(4x)^2+[(-5)+(-1)]4x+(-5)\times(- 1)$$
    $$=16x^2+(-6)4x+(5)$$
    $$=16x^2-24x+5$$.

    Hence, option $$A$$ is correct.
  • Question 5
    1 / -0
    Use the identity $$(x + a) (x + b) = x^2 + (a + b) x + ab$$ to find the given product:
    $$(4x + 5)$$$$(4x-1)$$.
    Solution
    Given, $$(4x + 5) (4x- 1)$$.

    We know, $$(x + a) (x + b) = x^2 + (a + b) x + ab$$.

    On comparing, we get,
    $$x=4x ,a=5 ,b=-1$$.

    Thus,
    $$=(4x+ 5) (4x -1)$$
    $$=(4x)^2+[(5)+(-1)]4x+(5)\times(- 1)$$
    $$=16x^2+(4)4x+(-5)$$
    $$=16x^2+16x-5$$.

    Hence, option $$A$$ is correct.
  • Question 6
    1 / -0
    Simplify :
    $$(4m + 5n)^2 + (5m + 4n)^2$$.
    Solution
    Given, $$(4m + 5n)^2 + (5m + 4n)^2$$.

    We know, $$(a+b)^2=a^2+2ab+b^2$$.

    Then,
    $$(4m + 5n)^2 + (5m + 4n)^2$$
    $$=[(4m)^2+2(4m)(5n)+(5n)^2]+[(5m)^2+2(5m)(4n)+(4n)^2]$$
    $$=16m^2+40mn+25n^2+25m^2+40mn+16n^2$$
    $$=41m^2+80mn+41n^2$$.

    Therefore, option $$A$$ is correct.
  • Question 7
    1 / -0
    Simplify:
    $$(m^2 - n^2m)^2 + 2m^3n^2$$.
    Solution
    Given, $$(m^2 - n^2m)^2 + 2m^3n^2$$.

    We know, $$(a-b)^2=a^2-2ab+b^2$$.

    Then,
    $$(m^2 - n^2m)^2 + 2m^3n^2$$
    $$=(m^2)^2-2(m^2)(n^2m)+(n^2m)^2+2m^3n^2$$
    $$=m^4-2m^3n^2+n^4m^2+2m^3n^2$$
    $$=m^4+n^4m^2$$.

    Therefore, option $$B$$ is correct.
  • Question 8
    1 / -0
    The product of $$4a^{2}, -6b^{2}$$ and $$3a^{2}b^{2}$$ is
  • Question 9
    1 / -0
    Simplify:
    $$(ab + bc)^2 -  2ab^2c$$.
    Solution
    Given, $$(ab + bc)^2 - 2ab^2c$$.

    We know,
    $$(a+b)^2=a^2+2ab+b^2$$.

    Then,
    $$(ab + bc)^2 - 2ab^2c$$
    $$=(ab)^2+2(ab)(bc)+(bc)^2-2ab^2c$$
    $$=a^2b^2+2ab^2c+b^2c^2-2ab^2c$$
    $$=a^2b^2+b^2c^2$$.

    Therefore, option $$C$$ is correct.
  • Question 10
    1 / -0
    Use the identity $$(x + a) (x + b) = x^2 + (a + b) x + ab$$ to find the given product:
    $$(2a^2 + 9)$$$$(2a^2 + 5)$$.
    Solution
    Given, $$(2a^2 + 9) (2a^2+5)$$.

    We know, $$(x + a) (x + b) = x^2 + (a + b) x + ab$$.

    On comparing, we get,
    $$x=2a^2 ,a=9 ,b=5$$.

    Thus,
    $$(2a^2 + 9) (2a^2+5)$$
    $$=(2a^2)^2+(9+5)2a^2+(9)\times(5)$$
    $$=4a^2+(14)2a^2+45$$
    $$=4a^4+28a^2+45$$.

    Therefore, option $$B$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now