Self Studies

Algebraic Expressions and Identities Test - 24

Result Self Studies

Algebraic Expressions and Identities Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Simplify:
    $$(2.5p -1.5q)^2- (1.5p-2.5q)^2$$.
    Solution
    Given, $$(2.5p - 1.5q)^2 - (1.5p - 2.5q)^2$$.

    We know, $$(a-b)^2=a^2-2ab+b^2$$.

    Then,
    $$(2.5p - 1.5q)^2 - (1.5p - 2.5q)^2$$
    $$=[(2.5p)^2-2(2.5p)(1.5q)+(1.5q)^2]-[(1.5p)^2-2(1.5p)(2.5q)+(2.5q)^2]$$
    $$=6.25p^2-7.5pq+2.25q^2-2.25p^2+7.5pq-6.25q^2$$
    $$=6.25p^2+2.25q^2-2.25p^2-6.25q^2$$
    $$=6.25p^2-2.25p^2+2.25q^2-6.25q^2$$
    $$=4p^2-4q^2$$.

    Therefore, option $$A$$ is correct.
  • Question 2
    1 / -0
    The value of the product  $$(4a^{2}+3b)(9b^{2}+4a)$$ at $$a = 1,$$ b$$ = -2$$ is
    Solution
    At $$a = 1,$$ $$b = -2$$ we have $$4a^2 + 3b= 4 + 3(-2) = -2$$ and
    $$9b^2 + 4a = 9(-2)^2 + 4(1) = 9 \times 4 + 4 = 40$$
    Thus product =$$ -2 \times 40 = -80 $$
  • Question 3
    1 / -0
    Simplify : $$\displaystyle \left(\frac{3}{2}x - 0.45y\right)^2$$
    Solution
    $$\displaystyle \left(\frac{3}{2}x - 0.45y\right)^2$$
    $$=\displaystyle \left(1.5x - 0.45y\right)^2$$
    $$=\displaystyle (1.5x)^2 + (0.45y)^2- 2(1.5x)(0.45y)^2$$
    $$= 2.25x^2 +0.2025 y^2 -1.35xy$$
  • Question 4
    1 / -0
    Evaluate (using formulae): $$\displaystyle \frac{2.43 \times 2.43 - 2 \times 2.43 \times 1.67 +1.67 \times 1.67}{2.43 - 1.67}$$
    Solution
    Given: $$\displaystyle \frac {2.43 \times 2.43 - 2 \times 2.43 \times 1.67 + 1.67 \times 1.67}{2.43-1.67}$$
    $$=\displaystyle \frac {(2.43)^2 - 2 \times 2.43 \times 1.67 + (1.67)^2 }{0.76}$$
    $$=\displaystyle  \frac {(2.43-1.67)^2}{0.76}$$         [ $$ \because a^2-2ab+b^2=(a-b)^2 $$]

    $$=\displaystyle  \frac {(0.76)^2}{0.76}$$

    $$=0.76$$
  • Question 5
    1 / -0
    Use the identity $$ (a+b)(a-b) = a^2-b^2$$ to evaluate:
    $$9.8\times 10.2 $$.
    Solution

    We know, $$ 9.8 \times 10.2 = (10 -0.2) \times (10+0.2) $$ .

    Applying the formula $$ (a+b)(a-b) = { a }^{ 2 }-{ b }^{ 2 } $$, where $$ a = 10 , b = 0.2 $$,

    we get,
    $$ 9.8 \times 10.2 = (10 -0.2) \times (10+0.2)=10^2-(0.2)^2 \\ =100-0.04=99.96 .$$

    Therefore, option $$D$$ is correct.

  • Question 6
    1 / -0
    Use the identity $$ (a+b)(a-b) = a^2-b^2$$ to evaluate:
    $$103\times 97 $$.
    Solution

    We know, $$ 103 \times 97 = (100 + 3) \times (100 - 3) $$ .

    Applying the formula $$ (a+b)(a-b) = { a }^{ 2 }-{ b }^{ 2 } $$, where $$ a = 100 , b = 3 $$,

    we get,
    $$ 103 \times 97 = (100 + 3) \times (100 - 3) = { 100 }^{ 2 }-{ 3 }^{ 2 } = 10000 - 9
    = 9991 $$.

    Therefore, option $$B$$ is correct.

  • Question 7
    1 / -0
    Use the identity $$ (a+b)(a-b) = a^2-b^2$$ to evaluate:
    $$8.3\times 7.7 $$.
    Solution
    We are given the formula $$(a+b)(a-b)=a^2-b^2$$.

    We know, $$8.3\times7.7=(8+0.3)(8-0.3)$$,
    where $$a=8$$ and $$b=0.3$$.

    Now, solve as shown below:
    $$8.3\times7.7$$
    $$=(8+0.3)(8-0.3)=8^{ 2 }-(0.3)^{ 2 }\\ \Rightarrow 8.3\times 7.7=64-0.09\\ \Rightarrow 8.3\times 7.7=63.91.$$

    Hence, $$8.3\times 7.7=63.91$$.

    Therefore, option $$A$$ is correct.
  • Question 8
    1 / -0
    Use the identity $$ (a+b)(a-b)=a^2-b^2$$ to evaluate:
    $$4.6\times 5.4 $$.
    Solution
    We are given the formula $$(a+b)(a-b)=a^2-b^2$$.

    We know, $$4.6 \times 5.4 = (5-0.4)(5+0.4)$$,
    where $$a=5$$ and $$b=0.4$$.

    Now, solve as shown below:
     $$4.6 \times 5.4 = (5-0.4)(5+0.4)$$
    $$={ 5 }^{ 2 }-{ 0.4 }^{ 2 }=25-0.16=24.84$$.

    Hence, $$4.6 \times 5.4 =24.84$$.

    Therefore, option $$A$$ is correct.
  • Question 9
    1 / -0
    Evaluate using expansion of $$(a+b)^2$$ or $$(a-b)^2$$ :
    $$(208)^2$$
    Solution
    $$ {208}^{2} = {(200 + 8)}^{2} $$

    It is the form of $$ {(a+b)}^{2} $$, where $$ a = 200, b = 8 $$

    Applying

    the formula $$ { (a+b) }^{ 2 } = {a}^{2}  + { b }^{ 2 } + 2ab $$

    $$ {208}^{2} = {(200 + 8)}^{2} = {200}^{2}  + { 8 }^{ 2 } + 2\times 200 \times 8 = 40000 + 64 + 3200 = 43264 $$

  • Question 10
    1 / -0
    Evaluate using the expansion of $$(a+b)^2$$ or $$(a-b)^2$$ :
    $$(92)^2$$
    Solution
    Given: $$ {92}^{2} = {(90 + 2)}^{2} $$

    It is in the form of $$ {(a+b)}^{2} $$, where $$ a = 90, b = 2 $$.

    Applying the formula $$ { (a+b) }^{ 2 } = {a}^{2}  + { b }^{ 2 } + 2ab $$ we get,

    $$ {92}^{2} = {(90 + 2)}^{2} $$

           $$= {90}^{2}  + { 2 }^{ 2 } + 2\times 90 \times 2 $$

           $$= 8100 + 4 + 360 = 8464 $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now