Self Studies

Algebraic Expressions and Identities Test - 25

Result Self Studies

Algebraic Expressions and Identities Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Simplify: $$\left (\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2}  \right)$$.
    Solution
    Given, $$(\sqrt { 5 } +\sqrt { 2 } )(\sqrt { 5 } -\sqrt { 2 } )$$.

    We know, $$(a+b)(a-b)=a^2-b^2$$.

    Applying the identity,

    $$(\sqrt { 5 } +\sqrt { 2 } )(\sqrt { 5 } -\sqrt { 2 } )$$

    $$=(\sqrt { 5 })^2- (\sqrt { 2 })^2=5-2=3$$.

    Hence, $$(\sqrt { 5 } +\sqrt { 2 } )(\sqrt { 5 } -\sqrt { 2 } )=3$$.

    Therefore, option $$A$$ is correct.
  • Question 2
    1 / -0
    Evaluate using expansion of $$(a+b)^2$$ or $$(a-b)^2$$ :
    $$(9.4)^2$$
    Solution
    $${ (a+b) }^{ 2 }\quad =\quad a^{ 2 }+b^{ 2 }+2ab\\ a=9,\quad b=0.4\\ =\quad 9^{ 2 }+0.4^{ 2 }+2*9*0.4\\ =\quad 88.36$$
  • Question 3
    1 / -0
    Evaluate using expansion of $$(a+b)^2$$ or $$(a-b)^2$$ :
    $$(188)^2$$
    Solution
    $$ {188}^{2} = {(200 - 12)}^{2} $$

    It is the form of $$ {(a - b)}^{2} $$, where $$ a = 200, b = 12 $$

    Applying the formula $$ { (a - b) }^{ 2 } = {a}^{2}  + { b }^{ 2 } - 2ab $$

    $$  {188}^{2} = {(200 - 12)}^{2} = {200}^{2}  + { 12 }^{ 2 } - 2\times 200 \times 12 = 40000 + 144 - 4800 = 35344 $$
  • Question 4
    1 / -0
    Evaluate:
    $$203\times 197$$
    Solution

    $$ 203 \times 197 = (200 + 3) \times (200 - 3) $$

    Applying the formula $$ (a+b)(a-b) = { a }^{ 2 }-{ b }^{ 2 } $$, where $$ a =

    200 , b = 3 $$

    $$ 203 \times 197 = (200 + 3) \times (200 - 3) = { 200 }^{ 2 }-{ 3 }^{ 2 } = 40,000 - 9 = 39991 $$

  • Question 5
    1 / -0
    Evaluate:
    $$20.8 \times 19.2$$
    Solution

    $$ 20.8 \times 19.2 = (20+ 0.8) \times (20 - 0.8) $$

    Applying the formula $$ (a+b)(a-b) = { a }^{ 2 }-{ b }^{ 2 } $$, where $$ a =

    20 , b = 0.8 $$


    $$ 20.8 \times 19.2 = (20+ 0.8) \times (20 - 0.8) = { 20 }^{ 2 }-{ 0.8 }^{ 2 } = 400 - 0.64

    = 399.36 $$


  • Question 6
    1 / -0
    Find the square of:
     $$ 9.7$$
    Solution

    We can write 

    $$ {9.7}^{2} = {(10 - 0.3)}^{2} $$
    It is the form of $$ {(a - b)}^{2} $$, where $$ a = 10, b = 0.3 $$
    Applying the formula $$ { (a - b) }^{ 2 } = {a}^{2}  + { b }^{ 2 } - 2ab$$
    $$  {9.7}^{2} = {(10 - 0.3)}^{2} = {10}^{2}  + { 0.3 }^{ 2 } -2\times 10 \times 0.3 = 100 + 0.09  - 6  = 94.09 $$

  • Question 7
    1 / -0
    Find the square of:
    $$391 $$
    Solution

    $$ {391}^{2} = {(400 - 9)}^{2} $$

    It is the form of $$ {(a - b)}^{2} $$, where $$ a = 400, b = 9 $$

    Applying the formula $$ { (a - b) }^{ 2 } = {a}^{2}  + { b }^{ 2 } - 2ab

    $$
    $$ {391}^{2} = {(400 - 9)}^{2} = {400}^{2}  + { 9 }^{ 2 } -

    2\times 400 \times 9 = 1,60,000 + 81 - 7200 = 152881 $$

  • Question 8
    1 / -0
    Find the square of: $$3a - 4b$$.
    Solution
    Given, $$(3a-4b)$$.

    On squaring, we get, $$(3a-4b)^2$$.

    We know,  $$(x+y)^2=x^2+y^2+2xy$$.

    Then,
    $$(3a-4b)^2$$
    $$=(3a)^2-2(3a)(4b)+(4b)^2$$
    $$=9a^2-24ab+16b^2$$.

    Therefore, option $$B$$ is correct.
  • Question 9
    1 / -0
    Find the square of: $$(3a + 7b)$$.
    Solution
    Given, $$2a + b$$.

    On squaring, we get, $$(2a+b)^2$$.

    We know,  $$(x+y)^2=x^2+y^2+2xy$$.

    Then,
    $$(2a+b)^2$$
    $$=(2a)^2+b^2+2(2a)(b)$$
    $$=4a^2+4ab+b^2$$.

    Therefore, option $$D$$ is correct.
  • Question 10
    1 / -0
    Find the square of: $$2a + b$$.
    Solution
    Given, $$2a + b$$.

    On squaring, we get, $$(2a+b)^2$$.

    We know,  $$(x+y)^2=x^2+y^2+2xy$$.

    Then,
    $$(2a+b)^2$$
    $$=(2a)^2+b^2+2(2a)(b)$$
    $$=4a^2+4ab+b^2$$.

    Therefore, option $$D$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now