Self Studies

Algebraic Expressions and Identities Test - 27

Result Self Studies

Algebraic Expressions and Identities Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \left ( z^{2}+13 \right )\left ( z^{2}-5 \right )$$ is equal to
    Solution
    $$ ( z^{2}+13) ( z^{2}-5)$$

    = $$( z^{2})^{2}+ ( 13+ ( -5 ) )z^{2}+ ( 13\times -5 )$$

    = $$\displaystyle z^{4}+8z^{2}-65 $$
  • Question 2
    1 / -0
    Simplify:$$\displaystyle \left ( p-q \right )^{2}+4pq$$.
    Solution
    Given, $$(p-q)^2+4pq$$.

    We know, $$(a-b)^2=a^2-2ab+b^2$$
    and $$(a+b)^2=a^2+2ab+b^2$$.

    Therefore, $$(p-q)^2+4pq$$
    $$=p^2-2pq+q^2$$+ 4$$pq$$     [Since, $$(a-b)^2=a^2-2ab+b^2$$]
    $$=p^2 + 2pq +q^2$$
    $$=(p+q)^2$$.                  [Since, $$(a+b)^2=a^2+2ab+b^2$$]

    Therefore option $$B$$ is correct.
  • Question 3
    1 / -0
    The product of $$\displaystyle 4a^{2},-6b^{2}$$ and $$\displaystyle 3a^{2}b^{2}$$ is
    Solution
    $$\displaystyle \left ( 4a^{2} \right )\left ( -6b^{2} \right )\left ( 3a^{2}b^{2} \right )$$
    = $$\displaystyle 4\times \left ( -6 \right )\times 3\times a^{2+2}.b^{2+2}$$
    = $$\displaystyle -72a^{4}b^{4}$$
  • Question 4
    1 / -0
    When $$\displaystyle a^{2}b\left ( a^{3}-a+1 \right )-ab\left ( a^{4}-2a^{2}+2a \right )-b\left ( a^{3}-a^{2}-1 \right )$$ is simplified, the answer is
    Solution
    Given expression is,
    $$a^2b(a^3-a+1)-ab(a^4-2a^2+2a)-b(a^3-a^2-1)$$
    $$=(a^5b-a^3b+a^2b)-(a^5b-2a^3b+2a^2b)-(a^3b-a^2b-b)$$
    $$=a^5b-a^3b+a^2b-a^5b+2a^3b-2a^2b-a^3b+a^2b+b$$
    $$=(a^5b-a^5b)+(2a^3b-a^3b-a^3b)+(a^2b-2a^2b+a^2b)+b$$
    $$=0+0+0+b$$
    $$=b$$
    Option C is correct.
  • Question 5
    1 / -0
    The value of $$\displaystyle \left ( x+4 \right )(x+3)-\left ( x-4 \right )\left ( x-3 \right )$$ is equal to
    Solution
    $$(x + 4)(x + 3) - (x - 4) (x - 3)$$
    = $$\displaystyle ( x^{2}+3x+4x+12)-( x^{2}-3x-4x+12 )$$
    = $$\displaystyle ( x^{2}+7x+12 )- ( x^{2}-7x+12 )$$
    = $$\displaystyle x^{2}+7x+12-x^{2}+7x-12$$
    = $$7x + 7x = 14x$$
  • Question 6
    1 / -0
    The product of $$\displaystyle \left ( \frac{4p}{5}-3 \right )$$ and $$\displaystyle \left ( \frac{5p}{8}-6 \right )$$ is
    Solution
    $$\displaystyle \left ( \frac{4p}{5}-3 \right )\left ( \frac{5p}{8} -6\right )$$

    $$\displaystyle =\frac{4p}{5}\times \left ( \frac{5p}{8}-6 \right )+(-3)\times \left ( \frac{5p}{8}-6 \right )$$

    $$\displaystyle =\frac{p^{2}}{2}-\frac{24p}{5}-\frac{15p}{8}+18$$

    $$\displaystyle =\frac{p^{2}}{2}-\frac{267}{40}p+18$$
  • Question 7
    1 / -0
    Simplify the following expression : $$x (y - z) - y (z - x) - z (x - y)$$
    Solution
    $$x(y-z) - y(z-x) - z(x-y) = xy - xz -yz + xy -zx + zy$$
    = $$ 2xy -2xz$$
    = $$ 2x(y-z)$$
  • Question 8
    1 / -0
    $$\displaystyle \left ( mx-ny \right )\left ( mx-ny \right )$$=_____
    Solution
    $$\displaystyle \left ( mx-ny \right )\left ( mx-ny \right )=\left ( mx-ny \right )^{2}$$
    = $$\displaystyle \left ( mx \right )^{2}-2mx\times ny+\left ( ny \right )^{2}$$
    = $$\displaystyle m^{2}x^{2}-2mxny+n^{2}y^{2}$$
  • Question 9
    1 / -0
    The value of the product $$\displaystyle \left ( 4a^{2}+3b \right )\left ( 9b^{2}+4a \right )$$ at $$a = 1$$ and $$b = - 2$$ is
    Solution
    equired product $$=(4a^2+3b)(9b^2+4a)$$
                                $$=[4(1)^2+3(-2)][9(-2)^2+4(1)]$$
                                $$=[4(1)-6][9(4)+4]$$
                                $$=[4-6][36+4]$$
                                $$=[-2][40]$$
                                $$=-80$$
    Option B is correct.
  • Question 10
    1 / -0
    The product of $$\displaystyle \left ( \frac{1}{5}x^{2}-\frac{1}{6}y^{2} \right )$$ and $$\displaystyle \left ( 5x^{2}+6y^{2} \right )$$ is
    Solution
    $$\displaystyle \left ( \frac{1}{5}x^{2}-\frac{1}{6}y^{2} \right )\left ( 5x^{2}+6y^{2} \right )$$

    = $$\displaystyle \frac{1}{5}x^{2}\left ( 5x^{2}+6y^{2} \right )-\frac{1}{6}y^{2}\left ( 5x^{2}+6y^{2} \right )$$

    = $$\displaystyle x^{4}+\frac{6}{5}x^{2}y^{2}-\frac{5}{6}x^{2}y^{2}-y^{4}$$

    = $$\displaystyle x^{4}+\frac{36x^{2}y^{2}-25x^{2}y^{2}}{30}-y^{4}$$

    = $$\displaystyle x^{4}+\frac{11x^{2}y^{2}}{30}-y^{4}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now