Self Studies

Algebraic Expressions and Identities Test - 28

Result Self Studies

Algebraic Expressions and Identities Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The product of $$(3x^2\, -\, 5x\, +\, 6)$$ and $$-8x^3$$  when $$x=0$$ is
    Solution
    $$(3x^2\,-\,5x\,+\,6)\, \times\, -8x^3$$
    = $$-24x^5\,+\, 40x^4\,-\, 48x^3$$
    Put $$x=0,$$ we get value as $$0$$

  • Question 2
    1 / -0
    $$\displaystyle \left ( a+b \right )^{2}-\left ( b-a \right )^{2}$$=______
    Solution
    Given, $$\displaystyle \left ( a+b \right )^{2}-\left ( b-a \right )^{2}$$.

    We know, $$a^2-b^2=(a+b)(a-b)$$.

    Then,
    $$\displaystyle \left ( a+b \right )^{2}-\left ( b-a \right )^{2}$$
    = $$\displaystyle \left \{ (a+b)+\left ( b-a \right ) \right \}\left \{ (a+b)-\left ( b-a \right ) \right \}$$
    $$=(a+b+b-a)(a+b-b+a)$$
    $$= 2b \times 2a = 4ab$$.

    Therefore, option $$C$$ is correct.
  • Question 3
    1 / -0
    The value of $$(501)^2\,  -\, (500)^2$$ is :
    Solution
    Given, $$(501)^{2}- (500)^{2}$$.

    We know, $$a^{2}- b^{2}= (a+b)(a-b)$$.

    Then,
    $$(501)^{2}- (500)^{2}$$
    $$=(501+500)(501-500)$$                
    $$=(1001)(1) $$
    $$= 1001$$.

    Therefore, option $$C$$ is correct.
  • Question 4
    1 / -0
    If$$(3x\, -\,4)\,(5x\, +\, 7)\, =\, 15x^2\, -\, ax\, -\, 28$$ then a = .........
    Solution
    (3x - 4) (5x + 7) = $$15x^2 \, -\, ax\, - 28$$
    $$15x^2\, + \, x\, -\, 28\,=\, 15x^2\,-\, ax\,-\, 28$$
    Comparing we get a = -1
  • Question 5
    1 / -0
    $$\displaystyle \left ( \frac{2}{5}ab+c \right )\left ( \frac{2}{5}ab-c \right )$$ is equal to
    Solution
    $$\displaystyle \left ( \frac{2}{5}ab+c \right )\left ( \frac{2}{5}ab-c \right )$$

    = $$\dfrac 25 ab \left( \dfrac 25ab -c\right) + c \left(\dfrac 25 ab - c\right)$$

    = $$\dfrac{4}{25}a^2b^2 - \dfrac 25 abc + \dfrac 25 abc - c^2$$

    = $$\dfrac{4}{25}a^2b^2-c^{2}$$
  • Question 6
    1 / -0
    $$\displaystyle \left ( -a-b \right )\left ( b-a \right )$$ is equal to
    Solution
    Given, $$(-a-b)(b-a)$$
    Taking the minus sign outside and rearranging
    $$=-(b+a)(b-a)$$
    Using the identity, $$x^2 - y^2 = (x+y)(x-y)$$
    $$-(b+a)(b-a)$$ 
    $$= - (b^2 - a^2)$$
    $$=  a^2 - b^2$$
  • Question 7
    1 / -0
    $$\displaystyle \left ( x+4 \right )\left ( x-4 \right )\left ( x^{2}+16 \right )$$ is equal to:
    Solution
    Given, $$\displaystyle \left ( x+4 \right )\left ( x-4 \right )\left ( x^{2}+16 \right )$$.

    We know, $$(a+b)(a-b)=a^2-b^2$$.

    Then,
    $$\displaystyle \left ( x+4 \right )\left ( x-4 \right )\left ( x^{2}+16 \right )$$
    = $$\displaystyle \left ( x^{2}-4^{2} \right )\left ( x^{2}+16 \right )$$
    = $$\displaystyle \left ( x^{2}-16 \right )\left ( x^{2}+16 \right )=\left ( x^{2} \right )^{2}-\left ( 16 \right )^{2}$$
    = $$\displaystyle x^{4}-256 $$.

    Therefore, option $$C$$ is correct.
  • Question 8
    1 / -0
    $$a^{2} + 4a + 4$$ =
    Solution
    $$a^{2} + 4a + 4 = a^{2} + 2(a) (2)+ (2)^{2}$$
    $$=(a + 2)^{2}$$
  • Question 9
    1 / -0

    Find the missing term in the following problem:

    $$\left(\displaystyle \frac{3x}{4}\, -\, \displaystyle \frac{4y}{3} \right )^2\, =\, \displaystyle \frac{9x^2}{16}\, +\, ..........\, +\, \displaystyle \frac{16y^2}{9}$$.

    Solution

    Given, $$\left(\displaystyle \frac{3x}{4}\, -\, \displaystyle \frac{4y}{3} \right )^2\, $$.

    We know, $$(a-b)^2=a^2-2ab+b^2$$.

    Then,

    $$\left(\displaystyle \frac{3x}{4}\, -\, \displaystyle \frac{4y}{3} \right )^2\, $$

    $$=\left( \displaystyle \frac{3x}{4} \right )^2\, -\, 2\, \left(\displaystyle \frac{3x}{4} \right )\left(\displaystyle \frac{4y}{3} \right )\, +\, \left(\displaystyle \frac{4y}{3}\right)^2$$

    $$=\, \displaystyle \frac{9x^2}{16}\, -\, 2xy\, +\, \displaystyle \frac{16y^2}{9}$$

    $$=\, \displaystyle \frac{9x^2}{16}\, +\, (-\, 2xy)\, +\, \displaystyle \frac{16y^2}{9}$$.

    Hence, the missing term is $$-2xy$$.

    Therefore, option $$B$$ is correct.

  • Question 10
    1 / -0
    Find the missing term in the following problem.
    $$\displaystyle {\left (\frac{3x}{4}\, -\, \frac{4y}{3} \right )^2\, =\, \frac{9x^2}{16}\, +\, .........\, +\, \frac{16y^2}{9}}$$
    Solution
    The L.H.S. of the algebraic expression is of the form $${ \left( a-b \right)  }^{ 2 }$$
    where,  $$a=\dfrac { 3x }{ 4 } \quad \& \quad b=\dfrac { 4y }{ 3 } $$.
    $${ \left( a-b \right)  }^{ 2 }={ a }^{ 2 }-2ab+{ b }^{ 2 }\\ \implies \left(\dfrac{3x}{4}-\dfrac{4y}{3}\right)={ \left( \dfrac { 3x }{ 4 }  \right)  }^{ 2 }-2\times \dfrac { 3x }{ 4 } \times \dfrac { 4y }{ 3 } +{ \left( \dfrac { 4y }{ 3 }  \right)  }^{ 2 }\\ =\dfrac { 9{ x }^{ 2 } }{ 16 } -2xy+\dfrac { 16{ y }^{ 2 } }{ 9 } $$.
    So the middle term $$-2xy$$ is missing.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now