Self Studies

Algebraic Expressions and Identities Test - 29

Result Self Studies

Algebraic Expressions and Identities Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Obtain the product of: $$rn, -mn, mnp$$
    Solution
    product of rn,mn,mnp
    $$rn \times -mn \times mnp = (1\times -1 \times 1) \times (r \times m \times m \times n \times n \times n \times p)$$
                                          =$$ -1 \times  r \times  m^2 \times  n^3 \times p$$
                                          =$$-rm^2n^3p$$
  • Question 2
    1 / -0
    Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
    $$a, 2b, 3c$$
    Solution
    volume of rectangular box= length $$\times$$ breadth $$\times$$ height
    volume = $$a \times 2b \times 3c $$
                             = $$(1 \times 2 \times 3) \times (a \times b \times c) $$
                             $$= 6abc$$
  • Question 3
    1 / -0
    Find the product of the following pairs of monomials:
    $$4, 7p$$
    Solution
    $$4\times 7 p=(4\times 7)p=28p$$
  • Question 4
    1 / -0
    Find the product of the following pairs of monomials:
    $$-4p, 7p$$
    Solution
    After multiplying the above two monomials we get
    $$-4p \times 7p =(-4 \times 7) \times (p \times p) $$
                               $$= - 28p^2$$ 
                               $$=-28p^2$$
  • Question 5
    1 / -0
    Obtain the product of $$xy, yz, zx$$.
    Solution
    product of xy, yz, zx is
    $$ xy \times yz \times zx = x \times x \times y \times y \times z \times z $$
                                        = $$x^{1 +1} \times y^{1+1} \times z^{1+1}$$
                                        = $$x^2y^2z^2$$
  • Question 6
    1 / -0
    Carry out the multiplication of the expressions in the following pair:
    $$a^2 -9, 4a$$
    Solution
    multiplication of $$a^2 -9, 4a$$
     =$$ (a^2-9) \times 4a = a^2 \times 4a -9 \times 4a$$
                                 $$ 4a^3 -36a$$
  • Question 7
    1 / -0
    Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
    $$ 5a, 3a^2, 7a^4$$
  • Question 8
    1 / -0
    Carry out the multiplication of the expressions in the following pair: 
    $$4p,q+r$$
  • Question 9
    1 / -0
    Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively
    $$(p, q); (10m, 5n); (20x^2, 5y^2); (4x, 3x^2); (3mn, 4np)$$
    Solution
    We know that the area of a rectangle = I $$\times $$ b, where I = length and b = breadth.
    Therefore, the areas of rectangles with pair of monomials $$(p, q), (10m, 5n); (20x^2, 5y^2); (4x, 3x^2)$$and$$ (3mn, 4np) $$as their lengths and breadths are given by $$p\times q = pq$$
    1.$$ 10m \times n  =(10 \times5) \times (m \times n) = 50mn$$
    2. $$20x^2 \times 5y^2= (20 \times  5) \times (x^2 \times y^2) = 100x^2y^2$$
    3. $$4x \times 3x^2    = (4 \times 3) \times (x \times x^2)$$
                                = $$12x^3$$
    and,
    4.  $$3mn \times 4np = (3\times4) \times (m \times n \times n \times p) $$
                                     = $$12mn^2p$$
  • Question 10
    1 / -0
    Find the product $$(5 - 2x) (3 + x)$$
    Solution
    $$(5-2x)(3+x) = 5(3+ x)-2x(3+x)$$
    $$ = 15+5x-6x-2x^2$$
    $$ =-2x^2 -x+ 15$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now