Self Studies

Algebraic Expressions and Identities Test - 30

Result Self Studies

Algebraic Expressions and Identities Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Multiply the binomials (2x+5)(2x + 5) and (4x3)(4x - 3)
    Solution

    (2x+5)×(4x3)=2x(4x3)+5(4x3)(2x + 5)\times (4x - 3)= 2x(4x - 3) + 5(4x - 3)
                                      =8x26x+20x15 = 8x^2- 6x + 20x-15
                                     =8x2+14x15 = 8x^2+ 14x -15
  • Question 2
    1 / -0
    Using identities, evaluate 8.928.9^2.
    Solution
    Given, 8.928.9^2
    =(90.1)2= (9 -0.1)^2.

    We know, (ab)2=a22ab+b2(a-b)^2 =a^2-2ab+b^2.

    Then,
    8.928.9^2
    =(90.1)2= (9 -0.1)^2
    =(9)22(9)(0.1)+(0.1)2 = (9)^2 -2(9) (0.1) + (0.1)^2
    =811.8+0.01=79.20+0.01=79.21 = 81 -1.8 + 0.01 = 79.20+0.01=79.21.

    Therefore, option CC is correct.
  • Question 3
    1 / -0
    Using identities, evaluate 12.127.9212.1^2 -7.9^2.
    Solution
    Given, (12.1)2(7.9)2(12.1)^2-(7.9)^2.

    We know, (a2b2)=(a+b)(ab)(a^2-b^2)=(a+b)(a-b).

    Then,
    (12.1)2(7.9)2(12.1)^2-(7.9)^2

    =(12.1+7.9)(12.17.9)=(12.1+7.9)(12.1-7.9)

    =20× 4.2=20\times 4.2

    =84=84.

    Therefore, option AA is correct.
  • Question 4
    1 / -0
    Using (x+a)(x+b)=x2+(a+b)x+ab(x + a) (x + b) = x^2+(a+b)x+ab, find 103×104103 \times 104.
    Solution
    Given, 103× 104103 \times 104
    =(100+3)(100+4)=(100+3)(100+4).

    Using, (x+a)(x+b)=x2+(a+b)x+ab (x+a)(x+b)=x^2+(a+b)x+ab.

    Then,
    103× 104103 \times 104
    =(100+3)(100+4)=(100+3)(100+4)
    =(100)2+(3+4)(100)+(3)(4) =(100)^2+(3+4)(100) +(3)(4)
    =(100)2+(7)(100)+12 =(100)^2+(7)(100) +12
    =10000+700+12 = 10000 +700 + 12
    =10712 = 10712.

    Therefore, option CC is correct.
  • Question 5
    1 / -0
    Simplify: (7m8n)2+(7m+8n)2(7m -8n)^2 + (7m + 8n)^2.
    Solution
    Given, (7m8n)2+(7m+8n)2(7m -8n)^2 + (7m + 8n)^2.

    We know, (ab)2=a22ab+b2(a-b)^2=a^2-2ab+b^2
    and (a+b)2=a2+2ab+b2(a+b)^2=a^2+2ab+b^2.

    Then,
    (7m8n)2+(7m+8n)2(7m -8n)^2 + (7m + 8n)^2
    =((7m)22(7m)(8n)+(8n)2)+((7m)2+2(7m)(8n)+(8n)2) = ((7m)^2-2(7m)(8n) + (8n)^2)+((7m)^2 + 2(7m)(8n) + (8n)^2)
    =(49m2112mn+64n2)+(49m2+112mn+64n2) = (49m^2-112mn + 64n^2)+(49m^2 + 112mn + 64n^2)
    =49m2112mn+64n2+49m2+112m+64n2 = 49m^2-112mn + 64n^2+49m^2 + 112m + 64n^2
    =98m2+128n2 = 98m^2 + 128n^2.

    Therefore, option BB is correct.
  • Question 6
    1 / -0
    Using identities, evaluate 5.225.2^2.
    Solution
    Given, (5.2)2(5.2)^2

    We know, (a+b)2=a2+b2+2ab(a+b)^2=a^2+b^2+2ab.

    Then,
    (5.2)2(5.2)^2
    =(5+0.2)2=(5+0.2)^2
    =52+(0.2)2+2(5)(0.2)=5^2+(0.2)^2+2(5)(0.2)
    =25+0.04+2(1)=25+0.04+2(1)
    =25+0.04+2=25+0.04+2
    =27.04=27.04.

    Therefore, option CC is correct.
  • Question 7
    1 / -0
    Simplify (x25)(x+5)+25(x^2-5)(x+5)+ 25
    Solution
    Given, (x25)(x+5)+25(x^2-5)(x + 5) + 25

    While multiplying a binomial with another binomial, each term of the first binomial must be multiplied by each term of the second binomial.

          =x2(x+5)5(x+5)+25 = x^2(x+5) -5(x+5)+25
  • Question 8
    1 / -0
    Simplify: (a2+5)(b3+3)+5(a^2 + 5)(b^3 + 3) + 5
    Solution
    (a2+5)(b3+3)+5(a^2+ 5)(b^3+ 3) + 5
    =a2(b3+3)+5(b3+3)+5 = a^2(b^3+3)+ 5(b^3 + 3)+ 5
    =a2b3+3a2+5b3+15+5 = a^2b^3+ 3a^2+ 5b^3+ 15 + 5
    =a2b3+3a2+5b3+20 = a^2b^3 + 3a^2+ 5b^3+ 20
  • Question 9
    1 / -0
    3x×(4x+2)3x \times (4x + 2)
    Solution
    3x×(4x+2)3x \times (4x + 2)
    =12x2+6x= 12x^{2} + 6x
    Hence option A is correct.

    3x×(4x+2)3x \times (4x + 2)
    =3x×2(2x+1)=3x \times 2 (2x+1)
    =6(2x2+x)=6(2x^2+x)
    Hence option B is correct.

    3x×(4x+2)3x \times (4x + 2)
    =12x2+6x= 12x^{2} + 6x
    =x(12x+6)=x(12x+6)
    Hence option C is correct.
  • Question 10
    1 / -0
    (4x+1)(4x1)=(4x + 1)(4x - 1) =
    Solution
    Given that: (4x+1)×(4x1) (4x+1)\times(4x-1)
    We can see that:  (4x+1)×(4x1)= (4x+1)\times(4x-1)=  4x×(4x1)+1×(4x1) 4x\times(4x-1)+1\times (4x-1)
                              (4x×4x)(4x×1)+(1×4x)(1×1)\Rightarrow (4x\times 4x)-(4x\times 1)+(1\times 4x)-(1\times 1)
                             16x24x+4x1\Rightarrow 16x^2-4x+4x-1
                             16x21\Rightarrow 16x^2-1
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now