Self Studies

Algebraic Expressions and Identities Test - 33

Result Self Studies

Algebraic Expressions and Identities Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$(a+1)(a-2) = a^2-a-2$$, this equation is true for
    Solution
    $$(a+1)(a-2) = a^2-2a+a-2 = a^2-a-2 = RHS$$
    This is correct for every value of $$a$$
  • Question 2
    1 / -0
    Find the value of $$99\times 101$$ using standard identity.
    Solution
    Given, $$99\times 101=(100-1)(100+1)$$.

    We know, $$(a+b)(a-b) = a^2-b^2$$.

    Then,
    $$99\times 101=(100-1)(100+1)$$
    $$=(100)^2-1^2$$
    $$=10000-1$$
    $$=9999$$.

    Therefore, option $$A$$ is correct.
  • Question 3
    1 / -0
    Using standard identity, find the value of $$102^2$$.
    Solution
    Given, $$102^2$$
    $$=(100+2)^2$$.

    We know, $$(a+b)^2=a^2+2ab+b^2$$.

    Then,
    $$102^2$$
    $$=(100+2)^2$$
    $$=100^2+2^2+2(2)(100) $$
    $$=10000+4+400 $$
    $$= 10404$$.

    Therefore, option $$D$$ is correct.
  • Question 4
    1 / -0
    Using standard identity, find $$(2x-y)^2$$.
    Solution
    Given, $$(2x-y)^2$$

    We know, $$(a-b)^2=a^2-2ab+b^2$$.

    Then,
    $$(2x-y)^2$$
    $$=(2x)^2+y^2-2\times 2x\times y$$
    $$= 4x^2+y^2-4xy$$.

    Therefore, option $$A$$ is correct.
  • Question 5
    1 / -0
    Using standard identity, find the value of $$(a+2b)^2$$.
    Solution
    Given, $$(a+2b)^2$$.

    We know, $$(x+y)^2=x^2+2xy+y^2$$.

    Then,
    $$(a+2b)^2$$ $$=a^2+(2b)^2 +2\times a\times 2b$$
                     $$=a^2+4b^2+4ab$$.

    Therefore, option $$C$$ is correct.
  • Question 6
    1 / -0
    $$2x^2y\times (x^2y^2z+xyz)$$
    Solution
    $$2x^2y\times(x^2y^2z+xyz)$$
    $$=2x^4y^3z+2x^3y^2z$$
  • Question 7
    1 / -0
    Using standard identity, find the value of $$99^2$$.
    Solution
    Given, 
    $$=99^2$$
    $$=(100-1)^2$$

    We know, $$(a-b)^2=a^2-2ab+b^2$$

    Then,
    $$99^2$$
    $$=(100-1)^2$$
    $$=100^2+1^2 - 2\times 100\times 1$$
    $$= 10000+1- 200$$
    $$=10001-200$$
    $$=9801$$

    Therefore, option $$B$$ is correct.
  • Question 8
    1 / -0
    Find the value of $$995^2-5^2$$.
    Solution
    Given, $$995^2-5^2$$.

    We know, $$a^2-b^2=(a+b)(a-b)$$.

    Then,
    $$995^2-5^2=(995+5)(995-5)$$
    $$=1000\times 990$$
    $$=990000$$.

    Therefore, option $$D$$ is correct.
  • Question 9
    1 / -0
    Find the value of $$49^2$$ using standard identity.
    Solution
    As we know that,
    $$(a-b)^2=a^2-2ab+b^2$$

    Substitute $$50$$ for $$a$$ and $$1$$ for $$b$$ in above formula,
    $$\begin{aligned}{}{(50 - 1)^2}& = {50^2} - 2 \times 50 \times 1 + {1^2}\\{49^2}& = 2500 - 100 + 1\\ &= 2401\end{aligned}$$

    Therefore, $$B$$ is correct.
  • Question 10
    1 / -0
    Square of $$3a-4b$$ is:
    Solution
    Given, square of $$3a-4b$$
    i.e. $$(3a-4b)^2$$.

    We know, $$(a-b)^2=a^2-2ab+b^2$$.

    Then,$$(3a-4b)^2$$
    $$= (3a)^2-2(3a)(4b)+(4 b)^2$$
    $$=9a^2-24ab+16b^2$$.

    Therefore, option $$A$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now