Self Studies

Algebraic Expressions and Identities Test - 34

Result Self Studies

Algebraic Expressions and Identities Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the value of $$47\times 53$$.
    Solution
    Given, $$47\times 53 $$
    $$= (50-3)(50+3)$$.

    We know, $$(a+b)(a-b)=a^2-b^2$$.

    Then,
    $$47\times 53 = (50-3)(50+3)$$
    $$=(50)^2-3^2=2500-9=2491$$.

    Therefore, option $$C$$ is correct.
  • Question 2
    1 / -0
    Find the value of $$87^2-13^2$$.
    Solution
    Given, $$87^2-13^2$$.

    We know, $$a^2-b^2=(a+b)(a-b)$$.

    Then,
    $$=87^2-13^2$$
    $$=(87+13)(87-13)$$
    $$=100\times 74=7400$$.

    Therefore, option $$C$$ is correct.
  • Question 3
    1 / -0
    Product of the following monomials $$4x, -5y^3, 6xy$$ is
    Solution
    $$4x\times (-5y^3)\times (6xy) = (-20xy^3)\times (6xy)$$
                                          $$=-120x^2y^4$$
  • Question 4
    1 / -0
    Product of $$6a^2-7b+5ab$$ and $$2ab$$ is
    Solution
    $$2ab(6a^2-7b+5ab)=2ab\times 6a^2-2ab\times 7b+2ab\times 5ab$$
                                         $$= 12a^3b-14ab^2+10a^2b^2$$
  • Question 5
    1 / -0
    Find the value of $$52^2$$ using standard identity.
    Solution
    Given, $$52^2$$
    $$=(50+2)^2$$.

    We know, $$(a+b)^2=a^2+b^2+2ab$$.

    Then,
    $$52^2=(50+2)^2$$
    $$=50^2+2^2+2\times 50\times 2$$
    $$=2500+4+200$$
    $$=2704$$.

    Therefore, option $$B$$ is correct.
  • Question 6
    1 / -0
    Find the value of $$2p(p+q)-2p(p-q)$$
    Solution
    $$2p(p+q) - 2p(p-q)$$
    $$=2p^2+2pq-2p^2+2pq=4pq$$
  • Question 7
    1 / -0
    Find the value of $$mn\times np\times mp  \times  mnp$$
    Solution
    We know $$a^n \times a^m = a^{(m+n)} ]$$

    Hence $$mn\times np\times pm\times mnp $$ $$=m^{(1+1+1)} \times n^{(1+1+1)} \times p^{(1+1+1)}$$                   

                                                          $$=m^3n^3p^3$$
  • Question 8
    1 / -0
    Find the product of $$(x+4)(x+10)$$
    Solution
    $$(x+4)(x+10) = x(x+10)+4(x+10)$$
                                 $$ = x^2+10x+4x+40$$
                                 $$ =x^2+14x+40$$
  • Question 9
    1 / -0
    Simplify: $$\cfrac { { m }^{ 8 }{ p }^{ 7 }{ r }^{ 12 } }{ { m }^{ 3 }{ r }^{ 9 }{ p }^{  } } \times { p }^{ 2 }{ r }^{ 3 }{ m }^{ 4 }$$
    Solution
     $$\cfrac { { m }^{ 8 }{ p }^{ 7 }{ r }^{ 12 } }{ { m }^{ 3 }{ r }^{ 9 }{ p }^{  } } \times { p }^{ 2 }{ r }^{ 3 }{ m }^{ 4 }$$
    $$\Rightarrow$$ 
     $$\cfrac { { m }^{ 12 }{ p }^{ 9 }{ r }^{ 1 5} }{ { m }^{ 3 }{ r }^{ 9 }{ p }^{1  } } $$
    $$\Rightarrow$$ 
     $$ m ^9 p ^8  r ^{ 6 } $$ (option D)
  • Question 10
    1 / -0
    Find the value of $$3p(p^2+q^2)$$ at $$ p=0, q=1$$
    Solution
    We need to find value of $$3p(p^2+q^2)$$ at $$p=0, q=1$$

    Therefore, $$3p(p^2+q^2)=3p^3+3pq^2$$

    Now, on substituting values of $$p$$ and $$q$$, we get

    $$3p^2+3pq^2=3(0)^2+3(0)(1)^2$$

                         $$=0+0=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now