Self Studies

Algebraic Expressions and Identities Test - 38

Result Self Studies

Algebraic Expressions and Identities Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$(7.2)^2$$ is (use an identity to expand):
    Solution
    We will use, $$(a+b)^2$$= $$a^2+2ab+b^2$$ to find the required result.

    Substitute $$7$$ for $$a$$ and $$0.2$$ for $$B$$ in the above identity,
    $$(7+0.2)^2=(7)^2+2(7)(0.2)+(0.2)^2$$
                       $$=49+2.8+0.04$$
                       $$=51.84$$

    Hence, option $$C$$ is correct.
  • Question 2
    1 / -0
    The expansion of $$(2x - 3y)^2$$ is:
    Solution
    Given, $$(2x-3y)^2$$.

    We know, $$(a-b)^2$$ $$ =$$ $$a^2-2ab+b^2$$.

    Then,
    $$(2x-3y)^2$$ $$ =$$ $$(2x)^2-2 (2x)(3y)+(3y)^2$$
    $$=$$  $$4x^2-12xy+9y^2$$.

    Therefore, option $$B$$ is correct.
  • Question 3
    1 / -0
    Which of the following relation is correct.
    Solution
    Let us multiply the given monomial $$3$$ by a binomial $$x-9$$ as shown below:

    $$3(x-9)=(3\times x)-(3\times 9)=3x-27$$

    Hence, $$3(x-9)=3x-27$$.
  • Question 4
    1 / -0
    Which of the following relation is correct.
    Solution
    Let us multiply the given monomial $$x$$ by a binomial $$3x+2$$ as shown below:

    $$x(3x+2)=(x\times 3x)+(x\times 2)=3x^{ 2 }+2x$$

    Hence, $$x(3x+2)=3x^{ 2 }+2x$$.
  • Question 5
    1 / -0
    Find the product of the following pairs:
    $$-3l,-2m$$
    Solution
    We multiply the given monomials $$-3l$$ and $$-2m$$ as shown below:

    $$(-3l)\times (-2m)\\ =(-3\times -2)\times (l\times m)\\ =6\times lm\\ =6lm$$

    Hence, the product of $$-3l$$ and $$-2m$$ is $$6lm$$.
  • Question 6
    1 / -0
    Find the product of the following pairs: $$6,7k$$
    Solution
    We multiply the given monomials $$6$$ and $$7k$$ as shown below:

    $$\Rightarrow 6\times 7k\\ =(6\times 7)\times k\\ =42\times k\\ =42k$$

    Hence, the product of $$6$$ and $$7k$$ is $$42k$$.
  • Question 7
    1 / -0
    $$(a + b)^{2} - (a - b)^{2}=$$ _____.
    Solution
    Given, $$(a+b)^{2}-(a-b)^{2}$$.

    We know, $$(a+b)^{2}$$ $$=\left ( a^{2}+2ab+b^{2} \right )$$
    and $$(a-b)^{2}$$ $$=(a^{2}-2ab+b^{2})$$.

    Then,
    $$(a+b)^{2}-(a-b)^{2}$$
    $$=\left ( a^{2}+2ab+b^{2} \right )-(a^{2}-2ab+b^{2})$$
    $$=a^{2}+2ab+b^{2}-a^{2}+2ab-b^{2}\\=4ab$$.

    Therefore, the required answer is $$4ab$$.

    Hence, option $$A$$ is correct.
  • Question 8
    1 / -0
    The product of $$(x - 1)(2x - 3)$$ is _____
    Solution
    Expanding: $$(x-1)\times(2x-3)$$

                   $$=2x^{2}-2x-3x+3$$

    After combining the like terms we get:

                    $$=2x^{2}-5x+3$$
  • Question 9
    1 / -0
    The value of $$\displaystyle\left (5^{\tfrac {1}{2}} + 3^{\tfrac {1}{2}}\right ) \left (5^{\tfrac {1}{2}} - 3^{\tfrac {1}{2}}\right )$$ is:
    Solution
    Given, $$\displaystyle\left (5^{\tfrac {1}{2}} + 3^{\tfrac {1}{2}}\right ) \left (5^{\tfrac {1}{2}} - 3^{\tfrac {1}{2}}\right )$$.

    We know,  $$(a+b)(a-b)=a^2-b^2$$.

    Then,
    $$\displaystyle\left (5^{\tfrac {1}{2}} + 3^{\tfrac {1}{2}}\right ) \left (5^{\tfrac {1}{2}} - 3^{\tfrac {1}{2}}\right )$$
    $$=\displaystyle 5^{\tfrac {1}{2}\times2} - 3^{\tfrac {1}{2}\times2}$$
    $$=\displaystyle 5^{1} - 3^{1}$$
    $$=\displaystyle 5- 3$$
    $$=\displaystyle 2$$.

    Hence, option $$A$$ is correct.
  • Question 10
    1 / -0
    Find the product of $$\left(\dfrac{1}{2}x^2-\dfrac{1}{3}y^2\right)$$ and $$\left(\dfrac{1}{2}x^2+\dfrac{1}{3}y^2\right)$$.
    Solution
    Given, product of $$\Bigl(\dfrac{1}{2}x^2-\dfrac{1}{3}y^2\Bigr)$$ and $$ \Bigl(\dfrac{1}{2}x^2+\dfrac{1}{3}y^2\Bigr)$$
    i.e. $$\Bigl(\dfrac{1}{2}x^2-\dfrac{1}{3}y^2\Bigr)\times \Bigl(\dfrac{1}{2}x^2+\dfrac{1}{3}y^2\Bigr)$$.

    We know, the identity $$(a+b)(a-b)=a^2-b^2$$.

    Then,
    $$\Bigl(\dfrac{1}{2}x^2-\dfrac{1}{3}y^2\Bigr)\times \Bigl(\dfrac{1}{2}x^2+\dfrac{1}{3}y^2\Bigr)$$
    $$=\Bigl(\dfrac{1}{2}x^2\Bigr)^2-\Bigr(\dfrac{1}{3}y^2\Bigl)^2$$
    $$=\dfrac{1}{4}x^4-\dfrac{1}{9}y^4$$.

    Therefore, option $$B$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now