Self Studies

Algebraic Expressions and Identities Test - 39

Result Self Studies

Algebraic Expressions and Identities Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$(-5{x}^{2}y) \times (-\dfrac{2}{3} x{y}^{2}z) \times (\dfrac{8}{15} xy{z}^{2}) \times (-\dfrac{1}{4} z)$$ is ______. 
    Solution
    We have,
    $$\quad \quad \left( -5{ x }^{ 2 }y \right) \times \left( -\dfrac { 2 }{ 3 } x{ y }^{ 2 }z \right) \times \left( \dfrac { 8 }{ 15 } xy{ z }^{ 2 } \right) \times \left( -\dfrac { 1 }{ 4 } z \right) \\ =\left( -5\times \left( -\dfrac { 2 }{ 3 }  \right) \times \dfrac { 8 }{ 15 } \times \left( -\dfrac { 1 }{ 4 }  \right)  \right) \times \left( { x }^{ 2 }y\quad \times \quad x{ y }^{ 2 }z\quad \times \quad xy{ z }^{ 2 }\quad \times \quad z \right) \quad \\ =\left( -\dfrac { 2\times 2 }{ 3\times 3 }  \right) \times \left( \left( { x }^{ 2 }\times x\times x \right) \times \left( y\times { y }^{ 2 }\times y \right) \times \left( z\times { z }^{ 2 }\times z \right)  \right) \\ =\left( -\dfrac { 4 }{ 9 }  \right) \times \left( { x }^{ 4 } \right) \times \left( { y }^{ 4 } \right) \times \left( { z }^{ 4 } \right) \\ =\left( -\dfrac { 4 }{ 9 }  \right) \left( { x }^{ 4 } \right) \left( { y }^{ 4 } \right) \left( { z }^{ 4 } \right)$$
    Answer is A
  • Question 2
    1 / -0
    Using identities, evaluate:
    $$71^2$$.
    Solution
    Given, $$71^2$$,
    i.e. $$71^2$$ $$=(70+1)^2$$.

    We know,
    $$(x+y)^{ 2 }=x^{ 2 }+y^{ 2 }+2xy$$.

    Then,
    $$71^{ 2 }=(70+1)^{ 2 }\\ =70^{ 2 }+(2\times 70\times 1) + 1^2\\ =4900+140+1\\ =5040+1 \\=5041.$$

    Hence, $$71^2=5041$$.

    Therefore, option $$A$$ is correct.
  • Question 3
    1 / -0
    Find the product $$24x^2(1-2x)$$ and evaluate if for $$x=2$$
    Solution
    Let us multiply the given monomial and binomial as shown below:

    $$24{ x }^{ 2 }(1-2x)\\ =\left( 24{ x }^{ 2 }\times 1 \right) -\left( 24{ x }^{ 2 }\times 2x \right) \\ =24{ x }^{ 2 }-48{ x }^{ 3 }$$

    Now, let us substitute $$x=2$$ in $$24{ x }^{ 2 }-48{ x }^{ 3 }$$ as follows:

    $$24{ (2) }^{ 2 }-48{ (2) }^{ 3 }=(24\times 4)-(48\times 8)=96-384=-288$$

    Hence, $$24{ x }^{ 2 }(1-2x)=-288$$ for $$x=2$$.
  • Question 4
    1 / -0
    The value of $${ \left( 1.02 \right)  }^{ 2 }+{ \left( 0.98 \right)  }^{ 2 }$$, corrected to three decimal places is:
    Solution
    Given, $$(1.02)^2+(0.98)^2$$.

    We know, $$(a+b)^2= a^2+2ab+b^2$$.

    Then,
    $$(1.02)^2+(0.98)^2$$
    $$=(1.02)^2+(0.98)^2+(2\times 1.02\times 0.98)-(2\times 1.02\times 0.98$$)
    $$=(1.02+0.98)^2-1.9992$$
    $$=(2)^2-1.9992$$
    $$=4-1.9992$$
    $$=2.0008$$.

    When corrected to three decimal digit,
    $$2.0008$$ $$=2.001$$.

    Therefore, option $$A$$ is correct.
  • Question 5
    1 / -0
    Factorise : $${ (ax+by) }^{ 2 }+{ (2bx-2ay) }^{ 2 }-6abxy$$
    Solution
    $$\left( ax+by\right)^2+\left( 2bx-2ay\right)^2-babxy$$
    Here we will use the following identity,
    $$\Rightarrow \left( m+n\right)^2=m^2+n^2+2mn$$
    and $$\left(m-n\right)^2=m^2+n^2-2mn$$

    Using this we have :
    $$= \left(ax\right)^2+\left(by\right)^2+2axby+4\left(bx\right)^2+4\left(ay\right)^2-8axby-6abxy$$
    $$=a^2x^2+b^2y^2+4b^2x^2+4a^2y^2-14axby+2axby$$
    $$=a^2x^2+b^2y^2+4b^2x^2+4a^2y^2-12axby$$
    Hence, the answer is $$a^2x^2+b^2y^2+4b^2x^2+4a^2y^2-12axby.$$
  • Question 6
    1 / -0
    If $$xy=20$$ and $$(x+y)^{2}=70$$, then $$x^{2}+y^{2}$$ is equal to
    Solution
    $$(x+y)^2=x^2+y^2+2xy$$

    It is given that $$(x+y)^2=70$$ and $$xy=20$$

    $$\Rightarrow 70=x^2+y^2+(2\times 20)$$

    $$x^2+y^2=70-40$$

                 $$=30$$
  • Question 7
    1 / -0
    Product of the following monomials $$4p$$, $$- 7q^{3}$$, $$-7pq$$ is
    Solution
    Given monomials are : $$4p$$, $$- 7q^{3}$$, $$-7pq$$

    $$\therefore$$  Product $$=(4p)\times(- 7q^{3})\times(-7pq)=4\times (-7)\times (-7)\times p\times q^{3} \times pq =196p^{2}q^{4}$$

    Hence, option (A) is correct.
  • Question 8
    1 / -0
    If $$x + y = 2013$$ and $$\frac{1}{x}+\frac{1}{y}=2013$$, what is the value of xy?
  • Question 9
    1 / -0
    Simplify the following expression:  
    $$(3x^2 * 7x^7)+ (2y^3 * 9y^{12})$$
  • Question 10
    1 / -0
    Simplify the following expression:
    $$(2x^4y^7m^2z) ^{TM} (5x^2y^3m^8)$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now