Self Studies

Herons Formula Test - 18

Result Self Studies

Herons Formula Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Area of an equilateral triangle of side $$a$$ units can be calculated by using the formula :
    Solution
    We know that for an equilateral triangle, $$a=b=c$$

    By Heron's formula, we get $$\triangle=\sqrt{s(s-a)(s-b)(s-c)}$$

    So, area of given equilateral triangle $$=\sqrt { s\left( s-a \right) \left( s-a \right) \left( s-a \right)  }$$

                                                                 $$ =\left( s-a \right) \sqrt { s\left( s-a \right)  } $$
  • Question 2
    1 / -0
    The sides of a triangle are 5 cm, 12 cm and 13 cm. Then its area  is
    Solution
    Using Heron's formula i.e.
    $$A=\sqrt{s(s-a)(s-b)(s-c)}$$
    where,
    $$a=5  $$ cm
    $$b=12$$ cm
    $$c=13$$ cm
    $$s=\displaystyle \frac{a+b+c}{2}=\frac {5+12+13}{2}=15$$cm
    $$A=\sqrt {15(15-5)(15-12)(15-13)}$$
    $$A=\sqrt{15\times 10\times 3\times 2}$$
    $$\therefore A=30$$ $$cm^2$$
    $$\therefore  A=0.003$$ $$m^2$$
  • Question 3
    1 / -0
    Area of traingle ABC whose sides are 24m, 40m and 32m is-
    Solution

    Area of triangle with sides $$a$$, $$b$$ and $$c$$ and $$s$$ $$ = \dfrac { a+b+c }{ 2 } $$ is $$ \sqrt {s(s-a)(s-b)(s-c) } \ $$.
    For triangle with sides 24  m, 40  m and 32 m, $$ s = \dfrac { 24+40+32 }{ 2 }=48  m\ $$

    Area of the triangle with sides 24 m, 40  m and 32  m $$ =\sqrt {48(48-24)(48-40)(48-32) } =\sqrt { 48\times 24\times 8\times 16 } =\sqrt { 24\times 2\times 24\times 8\times 8\times 2 } = 24\times 8\times 2 = 384 {m}^{2}$$

    Hence, option 'B' is correct.

  • Question 4
    1 / -0
    The area of a triangle whose sides are 4 cm, 13 cm and 15 cm is
    Solution
    Given side of triangle is 4 cm , 13 cm and 15 cm
    We know that area of triangle=$$\sqrt{s(s-a)(s-b)(s-c)}$$
    where $$s=\frac{a+b+c}{2} and a, b, c are three sides
    $$s=\frac{4+13+15}{2}= 16$$
    Then area of triangle=$$\sqrt{16(16-4)(16-13)(16-15)}=\sqrt{16\times 12\times 3\times 1}=\sqrt{576}=24 cm^{2}$$
  • Question 5
    1 / -0
    The sides of a triangle are $$4, 5$$ and $$6$$ cm. The area of the triangle is equal to
    Solution
    Given that, a = 4 cm, b = 5 cm, and c = 6 cm
    We know $$\displaystyle s = \frac{a + b + c}{2} = \frac{4+ 5 + 6}{2} = \frac{15}{2}$$
    $$\therefore$$ Area of the triangle $$= \sqrt{s(s - a) (s - b) (s - c)}$$
    $$\displaystyle = \sqrt{\left ( \frac{15}{2} \right ) \left ( \frac{15}{2}-4 \right ) \left ( \frac{15}{2} - 5 \right ) \left ( \frac{15}{2} - 6 \right )}$$
    $$= \displaystyle \sqrt{\frac{15}{2} \times \frac{7}{2} \times \frac{5}{2} \times \frac{3}{2}} = \frac{15}{4} \sqrt 7 cm^2$$
  • Question 6
    1 / -0
    Heron's formula is :
    Solution
    When the sides of a triangle are given, we solve the area of the triangle using Heron's Formula which is

    Area of a triangle $$=\Delta$$ $$=\sqrt { s(s−a)(s−b)(s−c) } $$ where s is semi-perimeter which equals $$ s=\dfrac{(a+b+c)}{2}$$

    Thus, the Heron's formula is $$\Delta=\sqrt { s(s−a)(s−b)(s−c) } $$, $$ 2s={(a+b+c)}$$
  • Question 7
    1 / -0
    The sides of a triangle are $$3$$ cm, $$4$$ cm and $$5$$ cm. Its area is .......
    Solution
    By Heron's formula,
    Area of the triangle $$= \sqrt{s(s - a)(s - b)(s -c )}$$

    We know, $$s = \displaystyle \frac{3 + 4 + 5}{2} = 6$$

    $$\therefore $$ Area of triangle $$ = \sqrt{6(6 - 3)(6 - 4)(6 - 5)}$$

                                  $$ = \sqrt{6 \times 3 \times 2 \times1} = 6 cm^2$$
  • Question 8
    1 / -0
    Heron's formula is :
    Solution

    $${\textbf{Step -1: A triangle having side lengths as }}\mathbf{a,}{\textbf{ }}\mathbf b{\textbf{ and }}\mathbf c.{\text{ }}$$

                     $${\text{Area of triangle }} = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} $$

                     $${\text{Where, s is the semi perimeter of the triangle;}}$$

                     $${\text{that is, }}s = \dfrac{{a + b + c}}{2}$$

                    $${\text{Thus, the Heron's formula is}}$$ $$\vartriangle  = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} $$ $${\text{Where, }}2s = a + b + c$$

    $${\textbf{Hence, option D is correct. }}$$

  • Question 9
    1 / -0
    The sides of a $$\Delta$$ are $$7 cm, 24 cm$$ and $$25 cm$$. Find its area.
    Solution
    Let $$a=7$$cm $$b=24$$cm $$c=25$$cm 
    $$S=\cfrac { a+b+c }{ 2 } \\ =\cfrac { 7+24+25 }{ 2 } \\ =28\ cm$$
    Now, area of $$\triangle =\sqrt { S(S-a)(S-b)(S-c) } $$
    $$=\sqrt { 28(28-7)(28-24)(28-25) } \\ =\sqrt { 24\times 24\times 4\times 3 } \\ =\sqrt { 4\times 7\times 7\times 3\times 4\times 3 } \\ =4\times 7\times 3\\ =84\ { cm }^{ 2 }$$
  • Question 10
    1 / -0
    If s is the semi-perimeter of a $$\Delta A B C$$ whose sides are a,b,c then s=.............?

    Solution
    semiperimeter of a triangle is given as half of the perimeter which means half of the sum of the lengths of all three sides
    Hence, in given question $$\triangle ABC$$
    semiperimeter $$=s=\cfrac{a+b+c}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now