Self Studies

Herons Formula Test - 20

Result Self Studies

Herons Formula Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In figure, $$Ar(||gm ABCD)$$ is:

    Solution
    Area of parallelogram ABCD $$=2 \times area \ of \triangle ABC$$
    Now, 
    $$S=\cfrac { a+b+c }{ 2 } =\cfrac { 5+7+8 }{ 2 } =10\ cm$$
    Area of $$\triangle ABC=\sqrt { s(s-a)(s-b)(s-c) } $$
    $$=\sqrt { 10(10-5)(10-7)(10-8) } \\ =\sqrt { 10\times 5\times 3\times 2 } \\ =\sqrt { 300 } \\ =\sqrt { 3\times 100 } \\ =10\sqrt { 3 } \quad { cm }^{ 2 }$$

    Area of parallelogram ABCD$$=2\times \triangle ABC\\ =2\times 10\sqrt { 3 } \\ =20\sqrt { 3 } \ { cm }^{ 2 }$$
  • Question 2
    1 / -0
    Two sides of a triangle are $$16 cm$$ and $$14 cm$$ and its semi-perimeter is $$18 cm$$. Then the third side of the triangle is:
    Solution
    Semiperimeter, $$S=18 \ cm$$

    Let the side of the triangle be $$a,b,c$$ such that 
    $$a=16 \ cm ,\  b=14 \ cm \\$$
    $$S=\cfrac { a+b+c }{ 2 } \\ =\cfrac { 16+14+c }{ 2 } \\ 18=\cfrac { 30+c }{ 2 } \\ c=36-30=6 \ cm$$

    Therefore, third side of triangle is $$6 \ cm$$
  • Question 3
    1 / -0
    Area of an equilateral triangle of side 'a' units can be calculated by using the formula :
    Solution
    When the sides of triangle are given we solve the area of the triangle using Heron's Formula which is
    area of a triangle $$=\sqrt { s(s−a)(s−b)(s−c) } $$ 
    where $$s$$ is the semi-perimeter and $$ s=\dfrac{(a+b+c)}{2}$$
    Here $$a=b=c$$ ,
    Therefore, the formula becomes :
    $$Area\,=\,\sqrt { s(s−a)\times(s-a)\times(s-a) } $$

    $$\Rightarrow Area\,=\,\sqrt{s(s-a)\times(s-a)^2}$$

    $$\Rightarrow Area\,=\,(s-a)\sqrt{s(s-a)}$$

    Hence option D is correct.
  • Question 4
    1 / -0
    Heron's formunla is :
    Solution

  • Question 5
    1 / -0
    Area of an equilateral triangle of side 'a' units can be calculated by using the formula :
    Solution

  • Question 6
    1 / -0
    The area of a triangle whose sides are $$13$$ cm, $$14$$ cm and $$15$$ cm is :
    Solution

  • Question 7
    1 / -0
    The lengths of four sides and a diagonal of the given  quadrilateral are indicated in  the diagram. If $$A$$ denotes the area and $$l$$ the length of the other diagonal, then $$A$$ and $$l$$ are respectively

    Solution

    For $$\Delta ABC$$, a $$=$$ 6 cm, b $$=$$ 5, c $$=$$ 7 cm


    $$\therefore s = \dfrac{6+5+7}{2} = 9$$ cm


    $$\therefore$$  Area  of $$ \Delta  ABC = \sqrt{s(s-a)(s-b)(s-c)}$$


    $$= \sqrt{9\times (9-6)(9-5)(9-7)}$$


    $$= \sqrt{9\times 3\times 4\times 2}$$


    $$= 3\times 2\sqrt{6} = 6\sqrt{6}$$


    Thus, area of quadrilateral $$= 2\times$$ Area  of  $$\Delta  ABC$$
    $$= 12\sqrt{6}$$ sq cm

    From congruency of triangles, it can be proved that $$AE=ED= \dfrac{1}{2}AD$$, and $$ AE \perp BC$$

    $$ AE = \dfrac{1}{2}AD = \dfrac{l}{2}$$

    Area  of  $$\Delta  ABC  = \dfrac{1}{2}\times BC\times AE$$


    or $$6\sqrt{6} = \dfrac{1}{2}\times 6\times \dfrac{l}{2}$$


    or $$l = 4\sqrt{6}$$

  • Question 8
    1 / -0
    Area of an equilateral triangle of side a units can be calculated by using the formula :
    Solution

  • Question 9
    1 / -0
    If the sides of a triangle are doubled, then its area
    Solution
    Using Heron's formula i.e.
    $$A=\sqrt{s(s-a)(s-b)(s-c)}$$
    where,
    $$s=\displaystyle \frac{a+b+c}{2}$$

    Let, $$a_1=2a,b_1=2b,c_1=2c$$
    $$\Rightarrow s_1=2s$$
    $$\therefore A_1=\sqrt{2s(2s-2a)(2s-2b)(2s-2c)}$$
    taking 2 as common 
    $$\therefore A_1=\sqrt{16s(s-a)(s-b)(s-c)}$$
    $$\therefore A_1=4A$$
  • Question 10
    1 / -0
    Area of triangle ABC whose sides are 24 m, 40 m and 32 m, is -
    Solution
    $$S=\dfrac {24+40+32}{2}=\dfrac {96}{2}=48 m$$

    Area
    $$=\sqrt {48\times (48-24)(48-40)(48-32)}$$

    $$=\sqrt {48\times 24\times 8\times 16}$$

    $$=\sqrt {24\times 2\times 24\times 8\times 16}$$

    $$=24\times 16=384 m^2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now