Self Studies

Herons Formula Test - 24

Result Self Studies

Herons Formula Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the area of the parallelogram with sides $$10 cm$$ and $$12 cm$$ and one of the diagonals as $$14 cm.  $$
    Solution
    Let $$ABCD$$ be the given parallelogram.

    Area of parallelogram $$ABCD = 2$$ x (area of triangle $$ABC$$)

    Now $$a = 10$$ cm, $$b = 12$$ cm and $$c = 14$$ cm

    $$S=\dfrac { 10+12+14 }{ 2 } =\dfrac { 36 }{ 2 } =18$$ cm$$^2$$

    Area of triangle $$ABC$$:

    $$A=\sqrt { s(s-a)(s-b)(s-c) } =\sqrt { 18(18-10)(18-12)(18-14) } =\sqrt { 18\times 8\times 6\times 4 } =\sqrt { 3456 } =24\sqrt { 6 }$$ 

    Area of parallelogram $$ABCD$$:

    $$2\times 24\sqrt { 6 } =48\sqrt { 6 }$$ cm$$^2$$

    Hence, area of parallelogram is $$48\sqrt { 6 }$$ cm$$^2$$.
  • Question 2
    1 / -0
    The perimeter of a triangular field is 144 m and the ratio of the sides is 3 : 4 : 5 The area of the field is
    Solution
    Let the side of the triangle $$a,b$$ and $$c$$ be  $$3x,4x,5x$$

    Perimeter $$=144$$ m
    $$\therefore 3x+4x+5x=144$$
    $$\Rightarrow 12x=144$$
    $$\Rightarrow x=12$$

    Then$$ a=12\times 3=36m$$
    $$b=4\times 12=48 m$$
    $$c=5\times 12=60$$

    Then $$s=\dfrac{a+b+c}{2}=\dfrac{36+48+60}{2}=\dfrac{144}{2}=72$$

    $$\therefore $$ Area of the triangle$$=\sqrt{s(s-a)(s-b)(s-c)}$$

    $$\Rightarrow \sqrt{72(72-36)(72-48)(72-60)}$$

    $$\Rightarrow \sqrt{72\times 36\times 24\times 12}=864 \ m^2$$
  • Question 3
    1 / -0
    Find the area of a triangle with sides having length $$40, 24$$ and $$32 m$$
    Solution
    We use heron's formula to find the area of the triangle.

    Let us find the semi perimeter:

    $$S=\dfrac { 40+24+32 }{ 2 } =\dfrac { 96 }{ 2 } =48$$

    Now area of the triangle is:

    $$A=\sqrt { s(s-a)(s-b)(s-c) } =\sqrt { 48(48-40)(48-24)(48-32) } =\sqrt { 48\times 8\times 24\times 16 } =\sqrt { 147456 } =384$$ m$$^2$$

    Hence, the area of the triangle is $$384$$ m$$^2$$.
  • Question 4
    1 / -0
    Find the area of a triangle with two equal sides of $$5 cm$$ and remaining one of $$8 cm$$.
    Solution
    We use heron's formula to find the area of the triangle.

    Let us find the semi perimeter:

    $$S=\dfrac { 5+5+8 }{ 2 } =\dfrac { 18 }{ 2 } =9$$ cm

    Now area of the triangle is:

    $$A=\sqrt { s(s-a)(s-b)(s-c) } =\sqrt { 9(9-5)(9-5)(9-8) } =\sqrt { 9\times 4\times 4\times 1 } =\sqrt { 144 } =12$$ cm$$^2$$

    Hence, the area of the triangle is $$12 cm ^2$$
  • Question 5
    1 / -0
    Find the area of the triangluar field whose sides are $$39\ m, 25\ m$$ and $$56\ m$$ respectively.
    Solution
    $$\displaystyle s=\left ( 25+39+56 \right )\div 2$$
    $$\displaystyle =60m$$

    Area $$\displaystyle =\sqrt{s\left ( s-a \right )\left ( s-b \right )\left ( s-c \right )}m^{2}$$

    $$\displaystyle =\sqrt{60\left ( 60-39 \right )\left ( 60-25 \right )\left ( 60-56 \right )}$$

    $$\displaystyle =\sqrt{60\times 35\times 21\times 4}$$

    $$\displaystyle =\sqrt{\left ( 5\times 3\times 4 \right )\times \left ( 5\times 7 \right )\times \left ( 7\times 3 \right )\times 4}$$

    $$\displaystyle =\left ( 4\times 3\times 5\times 7 \right )m^{2}=420\ m^{2}$$
  • Question 6
    1 / -0
    The sides of a right triangle are 5cm, 12 cm and 13 cm . Then its area is
    Solution
    Hypotenuse will be opposite to right angle which is $$13$$ cm

    The base and height will be  $$5$$ cm and $$12$$ cm.

    $$Area\ of\ triangle=\dfrac { 1 }{ 2 } \times \dfrac { 5 }{ 100 } \times \dfrac { 12 }{ 100 }= \dfrac { 30 }{ 10000 } =0.003\ { m }^{ 2 }$$'
  • Question 7
    1 / -0
    The sides of a triangular plot are in the ratio of $$3:5:7$$ and its perimeter is $$300m$$. Find its area.
    Solution
    The sides of a the triangular plot are in the ratio $$3:5:7$$. So, let the sides of the triangle be $$3x$$, $$5x$$ and $$7x$$.

    Also it is given that the perimeter of the triangle is $$300$$ m therefore,

    $$3x+5x+7x=300$$
    $$15x=300$$
    $$x=20$$

    Therefore, the sides of the triangle are $$60,100$$ and $$140$$.

    Now using herons formula:

    $$S=\dfrac { 60+100+140 }{ 2 } =\dfrac { 300 }{ 2 } =150$$ m

    Area of the triangle is:

    $$A=\sqrt { s(s-a)(s-b)(s-c) } =\sqrt { 150(150-60)(150-100)(150-140) } =\sqrt { 150\times 90\times 50\times 10 } =\sqrt { 6750000 }$$
    $$=1500\sqrt { 3 }$$ m$$^2$$

    Hence, area of the triangular plot is $$1500\sqrt { 3 }$$ m$$^2$$.
  • Question 8
    1 / -0
    $$s$$ in Heron's formula is ___ .
  • Question 9
    1 / -0
    Area of the quadrilateral ABCD is 

    Solution
    If $$ABCD$$ is a quadrilateral, $$AB=9$$ m, $$AD=28$$ m, $$BC=40$$ m and $$CD=15$$ m and $$\angle ABC=90^{ 0 }$$.

    Area of $$ABCD$$= Area of triangle $$ABC+$$Area of triangle $$ACD$$

    In $$\triangle ABC$$, $$\angle B=90^{ 0 }$$, therefore,

    $$AC^2=AB^2+BC^2=9^2+40^2=81+1600=1681$$ 

    $$\Rightarrow AC=\sqrt { 1681 } =41$$ m

    Area of $$\triangle ABC$$ is:

    $$A=\dfrac { 1 }{ 2 } \times AB\times AC==\dfrac { 1 }{ 2 } \times 9\times 40=180$$ m$$^2$$

    In $$\triangle ACD$$,

    $$S=\dfrac { 28+15+41 }{ 2 } =\dfrac { 84 }{ 2 } =42$$ m

    Now area of $$\triangle ACD$$ is:

    $$A=\sqrt { s(s-a)(s-b)(s-c) } =\sqrt { 42(42-28)(42-15)(42-41) } =\sqrt { 42\times 14\times 27\times 1 } =\sqrt { 15876 } =126$$ m$$^2$$

    Hence, area of quadrilateral $$ABCD$$ is $$180+126=306$$ m$$^2$$.
  • Question 10
    1 / -0
    Find the area of a triangle, two of its sides are $$8 cm$$ and $$11 cm$$ and the perimeter is $$32 cm$$. 
    Solution
    Since the perimeter of the triangle with sides $$a$$, $$b$$ and $$c$$ is $$a+b+c$$, therefore, perimeter of triangle with sides $$8$$ cm, $$11$$ cm and $$c$$ cm with perimeter $$32$$ cm is:

    $$32=8+11+c$$
    $$c=32-19=13$$

    We use heron's formula to find the area of the triangle.

    Let us find the semi perimeter:

    $$S=\dfrac { 8+11+13 }{ 2 } =\dfrac { 32 }{ 2 } =16$$ cm

    Now area of the triangle is:
     
    $$A=\sqrt { s(s-a)(s-b)(s-c) } =\sqrt { 16(16-8)(16-11)(16-13) } =\sqrt { 16\times 8\times 5\times 3 } =\sqrt { 1920 } =8\sqrt { 30 }$$ cm$$^2$$
     
    Hence, the area of the triangle is $$8\sqrt { 30 }$$ cm$$^2$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now