Self Studies

Herons Formula Test - 25

Result Self Studies

Herons Formula Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the area of the triangle by Heron's formula.

    Solution
    We use heron's formula to find the area of the triangle.

    Let us find the semi perimeter:

    $$S=\dfrac { 5+3+4 }{ 2 } =\dfrac { 12 }{ 2 } =6$$ cm

    Now area of the triangle is:

    $$A=\sqrt { s(s-a)(s-b)(s-c) } =\sqrt { 6(6-5)(6-3)(6-4) } =\sqrt { 6\times 1\times 3\times 2 } =\sqrt { 36 } =6$$ m$$^2$$

    Hence, the area of the triangle is $$6$$ m$$^2$$.
  • Question 2
    1 / -0
    The area of a triangle by Heron's formula is
    Solution
    Using Herons formula, we first have to find the semi perimeter with sides $$a,b$$ and $$c$$:

    $$s=\dfrac { a+b+c }{ 2 }$$ 

    And then area of the triangle is:

    $$A=\sqrt { s(s-a)(s-b)(s-c) }$$ 

    Hence, area of a triangle by heron's formula is $$A=\sqrt { s(s-a)(s-b)(s-c) }$$.
  • Question 3
    1 / -0
    Find the area of a triangle using Heron's formula

    Solution
    We find the area of triangle using herons formula:

    $$S=\dfrac { 9+40+41 }{ 2 } =\dfrac { 90 }{ 2 } =45$$ cm

    Now area is:
     
    $$A=\sqrt { s(s-a)(s-b)(s-c) } =\sqrt { 45(45-9)(45-40)(45-41) } =\sqrt { 45\times 36\times 5\times 4 } =\sqrt { 32400 } =180$$ cm$$^2$$
     
    Hence, area of triangle is $$180$$ cm$$^2$$.
  • Question 4
    1 / -0
    Find the area of an equilateral triangle with side $$10cm$$.
    Solution
    Formula: Are of an equilateral triangle having side length $$a$$ is given by, $$\dfrac{\sqrt 3}{4}a^2$$

    Here it is given that, side length $$, a=10$$ cm
    Thus its area $$=\dfrac{\sqrt 3}{4}\times 10^2$$ cm$$^2=25\sqrt 3$$ cm$$^2$$
  • Question 5
    1 / -0
    Use Heron's formula to find the area of a triangle of lengths 3,3 and 4
  • Question 6
    1 / -0
    Use Heron's formula to find the area of a triangle of lengths $$5 cm, 9 cm$$ and $$12 cm$$.
    Solution
    We will find the area of triangle with lengths $$5$$ cm, $$9$$ cm and $$12$$ cm using heron's formula:

    $$S=\dfrac { 5+9+12 }{ 2 } =\dfrac { 26 }{ 2 } =13$$ units

    Now area is:
      
    $$A=\sqrt { s(s-a)(s-b)(s-c) } =\sqrt { 13(13-5)(13-9)(13-12) } =\sqrt { 13\times 8\times 4\times 1 } =\sqrt { 416 } =4\sqrt { 26 }$$ sq.units
     
    Hence, area of triangle is $$4\sqrt { 26 } cm^2$$
  • Question 7
    1 / -0
    A land ABCD is in the shape of a Quadrilateral has $$\angle C = 90, AB = 9m, BC = 12m, CD = 5m$$ and $$AD = 8m$$. How much area does it occupy?
    Solution
    $$BD = \sqrt{12^2+5^2} = \sqrt{144+25} = \sqrt{169}=13m$$ 
    Area of $$\triangle BDC = \dfrac{1}{2} \times 12\times 5m^2 = 6\times 5=30m^2$$
    Area of \triangle ABD
    $$S=\dfrac{9+8+13}{2} = \dfrac{17+13}{2} = \dfrac{30}{2} = 15$$
    $$=\sqrt{15\times (15-9)(15-8)(15-13)}$$
    $$=\sqrt{15\times 6\times 7\times 2}$$
    $$=\sqrt {3\times 5\times 3\times 2\times 7\times 2}$$
    $$=3\times 2\sqrt{35}=6\sqrt{35}$$
    Total area $$= 30+6\sqrt{35}m^2$$
  • Question 8
    1 / -0
    The sides of a triangle are $$5y, 6y $$ and $$9y$$. find an expression for its area $$A$$.
    Solution
    We will find the area of triangle with sides $$5y$$, $$6y$$ and $$9y$$ using heron's formula:

    Let $$S$$ be the semi perimeter of the given triangle

    $$S=\dfrac { 5y+6y+9y }{ 2 } \\=\dfrac { 20y }{ 2 }\\=10y$$

    Now area is:
     
    $$A=\sqrt { s(s-a)(s-b)(s-c) } \\=\sqrt { 10y\left( 10y-5y \right) \left( 10y-6y \right) \left( 10y-9y \right)  } \\=\sqrt { 10y\times 5y\times 4y\times y } \\=\sqrt { 200y^{ 4 } } \\=10y^{ 2 }\sqrt { 2 }$$
     
    Hence, area of triangle is $$10y^{ 2 }\sqrt { 2 }$$ sq.units.
  • Question 9
    1 / -0
    Use Heron's formula to find the area of a triangle of lengths $$7, 8$$ and $$9$$.
    Solution
    We will find the area of triangle with lengths $$7,8$$ and $$9$$ using herons formula:

    $$S=\dfrac { 7+8+9 }{ 2 } =\dfrac { 24 }{ 2 } =12$$ units

    Now area is:
      
    $$A=\sqrt { s(s-a)(s-b)(s-c) } $$

        $$=\sqrt { 12(12-7)(12-8)(12-9) } $$

        $$=\sqrt { 12\times 5\times 4\times 3 } $$

        $$=\sqrt { 720 } =12\sqrt { 5 }$$ sq.units
     
    Hence, area of triangle is $$12\sqrt { 5 }$$ sq.units.
  • Question 10
    1 / -0
    Use Heron's formula to find the area of a triangle of lengths $$4, 5$$ and $$6.$$
    Solution
    Given: Lengths of a triangle $$=4,$$ $$5,$$ and $$6$$  

    $$S=\dfrac { 4+5+6 }{ 2 } =\dfrac { 15 }{ 2 }$$ units
      
    Using heron's formula to find the area of the triangle:

    $$A=\sqrt { s(s-a)(s-b)(s-c) } $$

        $$=\sqrt { \dfrac { 15 }{ 2 } \left( \dfrac { 15 }{ 2 } -4 \right) \left( \dfrac { 15 }{ 2 } -5 \right) \left( \dfrac { 15 }{ 2 } -6 \right)  }$$

        $$ =\sqrt { \dfrac { 15 }{ 2 } \times \dfrac { 7 }{ 2 } \times \dfrac { 5 }{ 2 } \times \dfrac { 3 }{ 2 }  } $$

        $$=\sqrt { \dfrac { 1575 }{ 16 }  } $$

        $$=\dfrac { 15 }{ 4 } \sqrt { 7 }$$
     
    Hence, area of triangle is $$\dfrac { 15 }{ 4 } \sqrt { 7 }$$ sq. units.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now