Self Studies

Herons Formula Test - 27

Result Self Studies

Herons Formula Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the area of the parallelogram with sides $$9 cm$$ and $$11 cm$$ and one of the diagonals as $$14 cm. $$
    Solution

    Area of $$\parallel $$gm ABCD = 2 $$\times $$ area $$\triangle $$ABC
    ar $$\triangle $$ABC = $$\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } ,\quad \& \quad s=\dfrac { a+b+c }{ 2 } =\dfrac { 14+11+19 }{ 2 } =17cm$$
    $$\therefore $$ ar  $$\triangle $$ABC = $$\sqrt { 17\left( 17-14 \right) \left( 17-11 \right) \left( 17-9 \right)  } =\sqrt { 17\times 3\times 6\times 8 } =12\sqrt { 17 } { cm }^{ 2 }$$
    Therefore, ar $$\parallel $$gm ABCD = 2 $$\times $$ $$12\sqrt { 17 } =24\sqrt { 17 } { cm }^{ 2 }$$

  • Question 2
    1 / -0
    The parallel sides of a parallelogram are $$60$$m and $$25$$ m and one of the diagonals is $$65$$ m. Find the area of the parallelogram, 
    Solution

    The area of parallelogram $$ABCD = 2 \times  Ar \triangle ABC$$
    Now, 
     $$Ar\ \triangle ABC =\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } \quad \\ s=\dfrac { a+b+c }{ 2 } \\=\dfrac { 65+60+25 }{ 2 } \\=75m$$
    Thus,
    $$\therefore Ar \triangle ABC = \sqrt { 75\left( 75-65 \right) \left( 75-60 \right) \left( 75-25 \right)  } \\=\sqrt { 75\times 10\times 15\times 50 } \\=750{ m }^{ 2 }$$
    Thus, area of parallelogram $$=2\times 750\ m^2$$
                                                $$=1500\ m^2$$

  • Question 3
    1 / -0
    The perimeter of a triangular field is $$420$$ m and its sides are in the ratio $$6: 7: 8$$ Find area of the triangular field.
    Solution
    $$\textbf{Step - 1: Finding the sides}$$
                      $$\text{Given that the sides are in the ratio }6:7:8$$
                      $$\implies a=6x,b=7x,c=8x$$
                      $$\text{Perimeter}=a+b+c$$
                      $$\implies 420=6x+7x+8x=21x$$
                      $$\implies x=20$$
                      $$\implies a=120,b=140,c=160$$
    $$\textbf{Step - 2: Calculating area}$$
                      $$s=\dfrac{a+b+c}2=210$$
                      $$\implies \text{Area}=\sqrt{s(s-a)(s-b)(s-c)}$$
                      $$\implies \text{Area} = \sqrt{210\times90\times70\times50}$$
                      $$\implies \text{Area}=2100\sqrt{15}$$
    $$\textbf{Thus, the area of the given field is }\mathbf{2100\sqrt{15}}\textbf{ sq. m.}$$
  • Question 4
    1 / -0
    Find the area of an equilateral triangle each of whose side is 4 cm long?
    Solution
    solution:
    $$Area = \dfrac{\sqrt{3}}{4} r^2 $$
    $$Area = \dfrac{\sqrt{3}}{4} 4^2 $$
    $$Area = \dfrac{\sqrt{3}}{1} 4 $$
    hence the correct opt: D
  • Question 5
    1 / -0
    A triangular park in a city has dimensions 100m X 90m X110m.A contract is given to a company for planting grass in the park at the rate of Rs.4000 per hectare.Find the amount to be paid to the company.(Take $$\sqrt{2}=1.414$$)
    Solution
    $$Heron's\ Formula\ :$$
    Area of a triangle = $$\Delta=\sqrt{s(s-a)(s-b)(s-c)}$$
    where  $$s$$  is the semi-perimeter and  $$a,\ b$$  and  $$c$$  are the sides of the triangle.
    $$s=\dfrac{a+b+c}{2}$$


    Here, for the triangular park,
    $$a=100\ m,\ \ b=90\ m,\ \ c=110\ m$$  and

    $$s=\dfrac{100+90+110}{2}=150\ m$$

    Area of the triangular park = $$\Delta=\sqrt{150\times50\times60\times40}=3000\sqrt{2}\ m^2=0.3\sqrt{2}\ ha=0.4242\ ha$$

    Rate of planting grass = $$Rs.\ 4000\ /ha$$

    So, the amount to be paid = $$4000\times0.4242=Rs.\ 1696.80$$.   $$[C]$$
  • Question 6
    1 / -0
    Find the area of a triangle whose two sides are $$8$$ cm and $$11$$cm and the perimeter is $$32$$cm.
    Solution
    Let third side be $$x$$
    Perimeter $$=8+11+x$$
    $$19+x=32$$
    $$x=13$$
    $$s=\cfrac { 32 }{ 2 } =16$$
    Heron's formula
    $$A=\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } $$
    $$=\sqrt { 16\left( 16-8 \right) \left( 16-11 \right) \left( 16-13 \right)  } $$
    $$=\sqrt { 16\times 8\times 5\times 3 } $$
    $$=8\sqrt { 30 }\ cm^2$$
  • Question 7
    1 / -0
    One side of an equilateral triangle measures $$8$$ cm. Find its area using Heron's formula. What is its altitude
    Solution
    According to the Heron's formula, Area (A) of the triangle having sides $$a,b,c$$ units is 

    $$A=\sqrt{s(s-a)(s-b)(s-c)}$$

    where
    $$s=\cfrac{a+b+c}{2}$$

    For the given triangle,
    $$a=b=c=8cm$$

    $$s=\cfrac{8+8+8}{2}=12$$

    $$A=\sqrt{12(12-8)(12-8)(12-8)}$$

    $$A=\sqrt{3\times 4\times 4^{3}}$$

    $$=4\times 4\sqrt{3}$$

    $$=16\sqrt{3}$$

    Area of the triangle =$$\cfrac{1}{2}\times base \times altitude=16\sqrt{3}$$

    $$\cfrac{1}{2}\times 8 \times$$ altitude$$=16\sqrt{3}$$

    Altitude $$=\cfrac{16\sqrt{3}}{4}=4\sqrt{3}$$
  • Question 8
    1 / -0
    The perimeter of a triangle is $$300m$$. If its sides are in the ratio $$3:5:7$$. Find the area of the triangle.
    Solution
    Let, 1 side be  = $$3x$$
      2 side be  = $$5x$$
      3 side be  = $$7x$$


    According to question, $$ 3x+5x+7x=300$$
    $$\implies x= 20$$
    So, sides are $$ 60 ,100, 140 $$

    Area = $$\sqrt {s(s-a)(s-b)(s-c)}$$

    $$ s=semi-perimeter$$ 

     $$s=150 $$,  $$a = 60$$,  $$b = 100$$,  $$c = 140$$

    Area=$$\sqrt {150(150-60)(150-100)(150-140)}$$

    $$\implies \sqrt{150(90)(50)(10)}$$

    $$\implies1500\sqrt3\ m^2$$
  • Question 9
    1 / -0
    Find the area of a triangle whose sides are 9 cm, 12 cm, and 15 cm.
    Solution
    Given sides of the triangle
    $$a=9$$cm
    $$b=12$$cm
    $$c=15$$cm
    The given triangle is a right angle triangle
    because $$9^2+12^2=15^2$$
    $$\therefore$$Area $$=\dfrac{1}{2}\times 9\times 12=54$$ sq cm
    Area $$=54$$ sq cm.
  • Question 10
    1 / -0
    The perimeter of a triangle field is $$450\ m$$ and its sides are in the ratio $$25:17:12$$. Find the area of the triangle.
    Solution
    Let, 1 side be  = $$25x$$
      2 side be  = $$17x$$
      3 side be  = $$12x$$


    According to question, $$ 25x+17x+12x=450$$
    $$\implies x= \dfrac{450}{54}$$
    $$\implies x=\dfrac{25}{3}$$
    So, sides are $$ \dfrac{625}{3} , \dfrac{425}{3}, \dfrac{100}{1} $$

    Area = $$\sqrt {s(s-a)(s-b)(s-c)}$$ 

    $$s=semi-perimeter$$

     $$s= 225 $$,  $$a = \dfrac{625}{3}$$,  $$b = \dfrac{425}{3}$$,  $$c = \dfrac{100}{1}$$

    Area=$$\sqrt {225(225-\dfrac{625}{3})(225-\dfrac{425}{3})(225-100)}$$

    $$\implies \sqrt{225(\dfrac{50}{3})(\dfrac {250}{3})(125)}$$

    $$\implies6250\ m^2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now