Self Studies

Surface Areas and Volumes Test - 18

Result Self Studies

Surface Areas and Volumes Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The total surface area of a solid hemisphere of radius $$r$$ is given by
    Solution

    Curved surface area of hollow hemisphere $$=2\pi r^2$$

    The area of a circlular base of radius $$r$$ is $$\pi {{r}^{2}}$$ .

    Total surface area of solid hemisphere $$2\pi {{r}^{2}}+\pi {{r}^{2}}=3\pi {{r}^{2}}$$ .

  • Question 2
    1 / -0
    A reservoir is 3 m long, 2 m wide and 1 deep. Its capacity in litres is
    Solution
    Volume of the reservoir = l x b x h=3 x 2 x 1=6 cu m
    $$\displaystyle \left ( \because 1 cu\,  m = 1000 litre \right )$$
    ($$\displaystyle \because $$ Capacity of the reservoir =6 x 1000 =6000 litre.
  • Question 3
    1 / -0
    The diameter of a sphere is 21 cm. Calculate its volume
    Solution
    Diameter = 21 cm
    $$\displaystyle r=\dfrac{21}{2}cm$$
    Volume of the sphere$$\displaystyle =\dfrac{4}{3}\pi r^{3}$$
    $$\displaystyle =\dfrac{4}{3}\times \dfrac{22}{7}\times \dfrac{21}{2}\times \dfrac{21}{2}\times \dfrac{21}{2}$$
    $$\displaystyle= 4851 cm^{3}$$
  • Question 4
    1 / -0
    The radius of a sphere is 3 cm. Its volume is:
    Solution
    Volume of sphere $$\displaystyle =\dfrac{4}{3}\pi r^{3}$$

                                   $$=\dfrac{4}{3}\times \dfrac{22}{7}\times \left ( 3 \right )^{3}$$

                                   $$=113.14cm^{3}$$
  • Question 5
    1 / -0
    A solid in the form of a cuboid is 4 cm x 3 cm x 2 cm. Its volume will be
    (Note: cu cm $$=cm^3$$)
    Solution
    Volume of the cuboid =$$l$$ x$$ b$$ x$$ h$$ =$$4$$ x$$ 3$$ x$$ 2$$
                                     $$ =24$$ cu cm
  • Question 6
    1 / -0
    The curved surface area of a hemisphere of diameter $$2 r$$ is:
    Solution
    Diameter of the hemisphere= $$2r$$
    $$\therefore \text{Radius}=\dfrac{2r}{2}=r \  \text{cm}$$
    Curved surface area of hemisphere$$=2 \pi r^2$$
  • Question 7
    1 / -0
    If the surface area of a sphere is $$ \displaystyle   324\pi cm^{2}   $$ then its volume is
    Solution
    Given the surface area of sphere is $$324\pi cm^{2}$$
    $$\therefore 4\pi r^{2}=324\pi \Rightarrow r^{2}=81\Rightarrow r=9$$ cm
    then volume of sphere=$$\frac{4}{3}\pi (9)^{3}=\frac{4}{3}\times \pi \times 729=972\pi cm^{3}$$
  • Question 8
    1 / -0
    If the volume in $$ \displaystyle  m ^{2} $$ and the surface area in $$ \displaystyle  m ^{2} $$ of a sphere are numerically equal then the radius of the sphere in m is
    Solution
    Let the radius of the sphere is m
    So volume of sphere=$$\frac{4}{3}\pi m^{3}$$
    And surface area of sphere= $$4\pi m^{2}$$
    As per question both are numerically equal 
    $$\therefore \frac{4}{3}\pi m^{3}=\pi m^{2}\Rightarrow m=3$$
  • Question 9
    1 / -0
    $$l \times b \times h$$ is formula of---
    Solution
    Correct answer is C.
  • Question 10
    1 / -0
    A toy box can fit $$36$$ equal sized unit blocks in it. Then its volume is
    Solution
    $$\Rightarrow$$  Length of any edge of toy box $$(l)=1\,unit$$

    $$\Rightarrow$$  Volume of $$1$$ toy box $$=(l)^3$$
                                             $$=1\,cu\,units$$

    $$\Rightarrow$$  Volume of $$36$$ equal sized toy box $$=36\times 1\,cu\,units$$
                                                                   $$=36\,cu\,units$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now