Self Studies

Surface Areas and Volumes Test - 23

Result Self Studies

Surface Areas and Volumes Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The amount of water displaced by a solid spherical ball of diameter $$4.2$$ cm, when it is completely immersed in water, is
    Solution
    The amount of water displaced by a solid spherical ball when it is completely immersed in water is equal to its volume.
    Volume of a sphere of radius $$r$$ is $$\dfrac { 4 }{ 3 } \pi { r }^{ 3 } $$
    As the diameter of the ball is $$4.2$$ cm, its radius $$r = 2.1$$ cm
    Hence, volume of water displaced  $$ = \dfrac { 4 }{ 3 } \pi { r }^{ 3 } = \dfrac { 4 }{ 3 } \times \dfrac { 22 }{ 7 } \times 2.1\times 2.1\times 2.1 = 38.808$$ cm$$^{ 3 }  $$
  • Question 2
    1 / -0
    If two solid hemispheres of same base radius r are joined together along their bases, then curved surface area of this new solid is
    Solution
    We know that,
    Curved surface area of a hemisphere $$=2\pi r^2$$
    So, when two solids hemispheres of same base radius are joined together along their bases, then
    Curved surface area of newly formed solid sphere$$=2\times2\pi r^2=4\pi r^2$$
    Hence, A is the correct option.
  • Question 3
    1 / -0
    In a cylinder, radius is doubled and height is halved, curved surface area will
    Solution
    Curved surface area of cylinder is $$2 \pi r h$$.
    Given, $$R=2r,H=\dfrac{h}{2}$$
    Therefore, curved surface area of the cylinder$$=2\pi RH$$
    $$=2\pi(2r)\left (\dfrac{h}{2}\right)$$
    $$=2\pi rh$$
  • Question 4
    1 / -0
    The number of dimensions, a solid has :
    Solution
    A solid has length, width and height. Hence, it is 3-Dimensional.
  • Question 5
    1 / -0
    Area of the base of a solid hemisphere is 36$$\pi\  cm^2$$. Then its volume is :
    Solution
    Let the radius of the hemisphere be $$'r'$$ cm.
    Area of base $$=36\pi { cm }^{ 2 }$$
    $$\Rightarrow \pi { r }^{ 2 }=36\pi $$
    $$\Rightarrow { r }^{ 2 }=36$$ 
    $$\Rightarrow r=6cm$$
    $$\therefore $$  Volume of hemisphere $$=\dfrac { 2 }{ 3 } \pi { r }^{ 3 }$$
                                                $$=\dfrac { 2 }{ 3 } \times \pi \times 6\times 6\times 6$$
                                                $$=144\pi { cm }^{ 3 }$$
  • Question 6
    1 / -0
    Area of base of a solid hemisphere is $$36 \pi\ sq cm.$$ Then its volume is :
    Solution

    Area of base of solid hemisphere $$=36\pi $$
                                                     $$\pi { r }^{ 2 }=36\pi $$
                                                          $$r=6\ cm$$
    Volume of hemisphere $$=\dfrac { 2 }{ 3 } \pi { r }^{ 3 }=\dfrac { 2 }{ 3 } \times 6\times 6\times 6\times \pi =144\pi\ { cm }^{ 3 }$$

  • Question 7
    1 / -0
    The volume of a sphere of radius $$r$$ is:
    Solution

    $$\textbf{Step-1:Write the relevant formula of volume of sphere using given radius.}$$
                    $$\text{We have given,}$$ 
                    $$\text{Radius = r  unit.}$$
                   $$\therefore$$  $$\text{Volume of a sphere}$$ $$=\cfrac { 4 }{ 3 } \pi { r }^{ 3 }$$  $$\text{Cubic unit.}$$
    $$\textbf{Hence, option - A}$$

  • Question 8
    1 / -0
    Given dimensions of a cuboid as $$ l = 3\ cm, b = 2\ cm$$ and $$h = 1\ cm.$$ Find the volume.
    Solution
    Given: $$l=3\ cm$$
                $$ b=2\ cm$$
                $$h=1\ cm $$

    Volume of cuboid $$=lbh$$

                                   $$=3\times 2\times 1$$
     
                                   $$=6 \ { cm }^{ 3 }$$
  • Question 9
    1 / -0
    The radius of a solid hemisphere is $$2r$$, then its total surface area will be :
    Solution
    Radius of solid hemisphere $$=2r$$
    Total surface area of hemisphere $$=2\pi { r }^{ 2 }+\pi { r }^{ 2 }$$
                                                            $$=3\pi { r }^{ 2 }$$
                                                            $$=3\pi \times { \left( 2r \right)  }^{ 2 }$$
                                                            $$=12\pi { r }^{ 2 }$$

  • Question 10
    1 / -0
    If the surface area of a sphere is $$144 \pi \ cm^{2}$$, then its radius is:
    Solution
    Let radius of sphere be $$r$$ cm.
    We know, surface area of sphere $$=4\pi { r }^{ 2 }$$
    $$\implies$$ $$144\pi =4\pi { r }^{ 2 }$$
    $$\implies$$ $$ { { r }^{ 2 } }=\cfrac { 144\pi  }{ 4\pi  } =36$$
    $$\implies$$ $$ r=\sqrt { 36 } =6 cm$$ .
    Therefore, option $$A$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now