Self Studies

Surface Areas and Volumes Test - 27

Result Self Studies

Surface Areas and Volumes Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the surface area of a sphere of radius $$5.6$$ cm.
    Solution

    Given, radius $$r=5.6$$ cm.

    We know, the surface area of a sphere of radius $$ r= 4\pi { r}^{ 2 } $$

    $$= 4 \times \dfrac {22}{7} \times 5.6 \times 5.6 $$

    $$= 394.24  {cm}^{2} $$.

    Therefore, option $$A$$ is correct.

  • Question 2
    1 / -0
    What is the total surface area of a cube whose side is $$0.5 $$ cm?
    Solution
    The surface area of the cube of side '$$a$$' is given by,
    $$S=6a^2$$
    Here, $$a=0.5 $$ cm
    $$\therefore$$ the total surface area of a cube $$=6(0.5)^2=1.5 cm^2$$
  • Question 3
    1 / -0
    How many litres of milk can be hemispherical bowl of diameter $$10.5cm$$ hold?
    Solution

    Diameter of the bowl $$ = \cfrac {Diameter}{2} = \cfrac {10.5}{2} = \cfrac {21}{4}$$

    Volume of a hemisphere $$ = \cfrac { 2 }{ 3 } \pi { r }^{ 3 } $$

    $$= \cfrac {2}{3} \times \cfrac {22}{7} \times \cfrac {21}{4} \times \cfrac {21}{4} \times \cfrac {21}{4}$$

    $$ = 303.2  {cm}^{3} $$

    One litre of milk requires $$ 1000{cm}^{3} $$ of volume. 

    Hence in $$ 303.2 {cm}^{3}, \cfrac {303.2}{1000} = 0.303 $$ litres of milk can be filled.

  • Question 4
    1 / -0
    If the diameter of a cylinder is $$28$$ cm and its height is $$20$$ cm, then total surface area (in $${cm}^{2}$$) is:
    Solution

    Total surface area of a cylinder of Radius "$$R$$" and height "$$h$$" $$ = 2\pi R(R + h)$$
    Radius of the base of the cylinder $$ = \dfrac {28}{2}  = 14  $$ cm

    Hence, total surface area of the cylinder $$ =2\times \dfrac { 22 }{ 7 } \times 14(14 + 20) $$

    $$= 2992 cm^2 $$

  • Question 5
    1 / -0
    Find the volume of a sphere whose surface area is $$154{cm}^{2}$$.
    Solution
    Surface area of a sphere $$ = 4\pi { r }^{ 2 } = 154  $$ 

    $$ => 4 \times \cfrac {22}{7}\times { r }^{ 2 }  = 154  {cm}^{2} $$

    $$ => { r }^{ 2 } = \cfrac {49}{4}  $$$$ =\cfrac {7}{2}  cm $$
    Volume of a sphere $$ = \cfrac { 4 }{ 3 } \pi { r }^{ 3 } $$

    $$= \cfrac {4}{3} \times \cfrac {22}{7} \times \cfrac {7}{2} \times \cfrac {7}{2} \times \cfrac {7}{2} = 179 \cfrac {2}{3}  {cm}^{3}$$

  • Question 6
    1 / -0
    If a hemispherical dome has an inner diameter of 28 m, then its volume (in m$$^{3}$$) is:
    Solution

    Given that, the inner diameter of a hemispherical dome is $$28\ m$$.

    To find out: The volume of the dome.

    Radius of the hemispherical dome, $$ r= \dfrac {28}{2} = 14  \ m$$

    We know that, the volume of a hemisphere of radius $$r$$ is $$\dfrac { 2 }{ 3 }

    \pi { r }^{ 3 }$$

    $$\therefore \ Volume = \dfrac {2}{3} \times \dfrac {22}{7} \times 14 \times 14 \times 14\quad \quad \left[\because \ \pi=\dfrac{22}{7}\right]$$

    $$\Rightarrow \dfrac{120736}{21}$$

    $$\therefore \ Volume=5749.33  \ {m}^{3} $$

    Hence, the volume of the given hemispherical dome is $$5749.33  \ {m}^{3}$$.
  • Question 7
    1 / -0
    Find the volume of a sphere whose surface area is $$55.44{cm}^{2}$$. (Take $$\pi=\cfrac{22}{7}$$)
    Solution
    Let $$r$$ cm be the radius of the sphere. Its surface area $$=55.44{cm}^{2}$$
    $$\Rightarrow$$ $$4\pi {r}^{2}=55.44$$
    $$\Rightarrow$$ $$4\times \cfrac{22}{7}\times {r}^{2}=55.44$$
    $$\Rightarrow$$ $${r}^{2}=\cfrac{55.44\times 7}{4\times 22}=4.41={(2.1)}^{2}$$
    $$\Rightarrow$$ $$r=2.1cm$$
    now, volume of the sphere$$=\cfrac{4}{3}\pi {r}^{3}=\cfrac{1}{3}(4\pi {r}^{2})\times r=\cfrac{1}{3}\times 55.44\times 2.1{cm}^{3}$$
    $$=55.55\times 0.7{cm}^{3}$$
    Hence the volume of the sphere $$=38.808{cm}^{3}$$
  • Question 8
    1 / -0
    A capsule of medicine is in the shape of a sphere of diameter $$3.5mm$$. How much medicine (in $${mm}^{3}$$) is needed to fill this capsule?
    Solution
    $$r=\cfrac{3.5}{2}mm$$
    Capacity of the  capsule $$=\cfrac{4}{3}\pi {r}^{3}$$
    $$=\cfrac{4}{3}\times \cfrac{22}{7}\times \cfrac{3.5}{2}\times \cfrac{3.5}{2}\times \cfrac{3.5}{2}{mm}^{3}$$
    $$=\cfrac{4}{3}\times \cfrac{22}{7}\times \cfrac{7}{4}\times \cfrac{7}{4}\times \cfrac{7}{4}{mm}^{3}=\cfrac{11}{24}\times 49{mm}^{3}$$
    $$=\cfrac{539}{24}{mm}^{3}=22.346{mm}^{3}$$
  • Question 9
    1 / -0
    Find the quantity of water in liters in a hemispherical bowl of radius $$21\text{ cm}$$. The bowl is completely filled with water. (Take $$\pi=\cfrac{22}{7}$$)
    Solution
    Volume of a hemisphere $$ = \cfrac { 2 }{ 3 } \pi { r }^{ 3 } $$ 
                                               $$ = \cfrac {2}{3} \times \cfrac {22}{7} \times 21 \times 21 \times 21$$
                                               $$ = 19404\ {cm}^{3} $$

    $$1\text{ liter}= 1000{cm}^{3} $$

    Hence, in $$ 19404\ {cm}^{3} , \cfrac {19404}{1000} = 19.404\text{ liters} $$ of water can be filled.
  • Question 10
    1 / -0
    Write the curved surface area of a right circular cylinder whose radius is 3 cm and height is 5 cm.
    Solution
    Radius of cylinder $$=3 \text{ cm}$$ 
    Height of cylinder $$=5 \text{ cm}$$
    Cross sectional area of cylinder $$=2\pi rh=2\times \pi \times 3\times 5=30\pi \text{ cm}^2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now