Self Studies

Surface Areas and Volumes Test - 29

Result Self Studies

Surface Areas and Volumes Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the volume of a hemisphere of radius $$7\;dm$$.
    Solution
    Volume of hemisphere $$=$$ $$\dfrac { 2 }{ 3 } \pi { r }^{ 3 }=\dfrac { 2 }{ 3 } \times \dfrac { 22 }{ 7 } \times 7\times 7\times 7$$

                                           $$ =$$ $$718.67$$ $${ dm }^{ 3 }$$
  • Question 2
    1 / -0
    Diameter of a football is $$28\;cm$$. It is made up of small hexagones each of area $$112\;cm^2$$. Find the number of small hexagones used in football.
    Solution
    Given, diameter of football $$=28cm$$.
    Then, radius of football $$=14cm$$.
    $$\therefore $$  Area of football $$=4\pi { r }^{ 2 }=4\times \dfrac { 22 }{ 7 } \times 14\times 14=2464{ cm }^{ 2 }$$.
    Given, area of each hexagon $$=112{ cm }^{ 2 }$$
    Number of hexagon $$=\dfrac { 2464 }{ 112 } =22$$.
    Hence, option $$D$$ is correct.
  • Question 3
    1 / -0
    Diameter of a sphere is $$21$$ dm. Find its surface area.
    Solution
    Given, diameter of a sphere, $$d=21$$ dm,
    $$\therefore$$ radius of the sphere, $$r=\dfrac{d}{2}=\dfrac{21}{2}=10.5 $$ dm
    Surface area of sphere $$=4 \pi r^2$$
    $$=4 \pi (10.5)^2=4 \times \dfrac{22}{7} \times (10.5)^2$$
    $$=1386 dm^2$$.
    Therefore, option $$C$$ is correct.
  • Question 4
    1 / -0
    Which one of the following statement is INCORRECT?
    Solution
    Total surface area of a solid hemisphere is equal to the sum of curved surface area of the hemisphere and the area of the circular base.

    So,
    Total surface area $$=$$ $$ 2 \pi r^2 + \pi r^2$$
                                   $$=3 \pi r^2$$
  • Question 5
    1 / -0
    A hemispherical tank has inner radius of $$1.05\;m$$. Find its capacity in litres.
    Solution
    Capacity of tank $$=$$ volume of tank 
    Volume of hemispherical tank $$=\dfrac { 2 }{ 3 } \pi { r }^{ 3 }$$
    Given $$r=1.05\ m$$
    Capacity of the tank$$=\dfrac { 2 }{ 3 } \times \dfrac { 22 }{ 7 } \times 1.05\times 1.05\times 1.05$$
                                      
                                      $$=2.4255\ { m }^{ 3 }=2425.5\ litres$$ 
  • Question 6
    1 / -0
    The area of the curved surface of a sphere is $$5544\;m^2$$. Find the radius of the sphere.
    Solution
    Given, area of curved surface of a sphere $$=5544$$ $$cm^2$$
    We know, curved surface area of sphere $$=4 \pi r^2$$
    $$\Rightarrow 5544=4 \times \dfrac {22}{7}\times r^2$$
    $$\Rightarrow 7 \times 5544=4 \times 22\times r^2$$
    $$\Rightarrow r^2=441$$
    $$\Rightarrow r=21 m$$.
    Therefore, option $$D$$ is correct.
  • Question 7
    1 / -0
    Find the surface area of the following cubes with length of edge
    $$4\;cm$$
    $$3.2\;cm$$
    Solution
    Total surface area$$=6(4^2)=96 cm^2$$,for edge=4$$ cm^2$$
    Total surface area$$=6(3.2^2)=61.44 cm^2$$, for edge=61.44 $$cm^2$$

  • Question 8
    1 / -0
    The sum of the radius of the base and the height of a solid cylinder is $$37 m$$. If the total surface area of the cylinder be $$1628 sq. m$$, then its volume is: 
    Solution
    Given, $$r + h = 37 m$$
    Total Surface Area of a Cylinder $$ = 2\pi r(r + h)$$
    Given,
    $$ 2\times \cfrac {7}{22} \times r \times 37 =1628 $$
    $$\Rightarrow r= \cfrac {1628 \times 7}{22 \times 37 \times 2} =7  m $$
    Height (H) $$ = 37 - r = 37 -7 = 30  m $$
    Volume of a Cylinder $$ = \pi { R }^{ 2 }h $$ $$ = \cfrac {22}{7} \times 7 \times 7 \times 30 = 4620  {m}^{3} $$
  • Question 9
    1 / -0
    The volume of a hemispherical ball is given by the $$\displaystyle V=\frac{2}{3}\pi r^{3}$$ where $$V$$ is the volume and $$r$$ is the radius Find the diameter of he hemisphere whose volume is $$\displaystyle \frac{468512}{21}m^{3}$$
    Solution
    $$
    V\quad =\quad \dfrac { 2 }{ 3 } \pi { r }^{ 3 }\\ \\ \dfrac { 2 }{ 3 } \pi { r }^{ 3 }\quad =\quad \dfrac { 468512 }{ 21 } \\ { r }^{ 3 }\quad =\quad \dfrac { 468512 }{ 21 } \quad \left(\dfrac { 3 }{ 2\pi  } \right)\quad \\=\quad \dfrac { 468512 }{ 2\times 22 } \quad \\=10648\quad cu.m\\ r\quad =\quad \sqrt [ 3 ]{ 10648 } \quad \\=\quad 22m\\\Rightarrow Diameter\quad =\quad 44m
    $$
  • Question 10
    1 / -0
    Find the area covered by a road roller of width $$80\;cm$$ and diameter $$140\;cm$$ in $$40$$ revolutions.
    Solution
    Curved surface area of cylinder$$=2 \pi rh=2 \pi(70)(80)=35200 cm^2=3.52 m^2
    $$
    Area of 40 revolutions$$=3.52 \times 40=140.8 m^2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now