Self Studies

Surface Areas and Volumes Test - 40

Result Self Studies

Surface Areas and Volumes Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the surface area of a sphere.

    Solution
    We know, surface area of sphere, $$A=4\pi r^2$$.
    Given, radius, $$r=6\ ft$$.
    After substituting the value in the formula we get:
    Surface area of the sphere,
    $$A=4\times3.14\times6^2$$
    $$=4\times3.14\times6\times6$$
    $$=452.16\ ft^2$$.
    Therefore, option $$A$$ is correct.
  • Question 2
    1 / -0
    The radius of the given figure below is $$21$$ mi. Find its volume. (use $$\displaystyle \pi =\frac { 22 }{ 7 } $$).

    Solution
    Radius of the given figure is $$21$$ mi
    Volume of hemisphere $$\displaystyle =\frac { 2 }{ 3 } \pi { r }^{ 3 }$$
    $$\displaystyle =\frac { 2 }{ 3 } \times \frac { 22 }{ 7 } \times 21\times 21\times 21$$
    $$\displaystyle =19,404{\  mi }^{ 3 }$$
  • Question 3
    1 / -0
    A spherical shape jar has a radius of 2 cm. What is the volume of the jar?
    Solution
    Formula:
    Volume of sphere$$=\dfrac{4}{3}\pi r^3$$
    where,
    $$r=radius$$
    Given:
    $$r=2\ cm$$
    After substituting the value sin the formula we get:
    $$\Rightarrow \dfrac{4}{3}\pi r^3=\dfrac{4}{3}\times3.14\times2^3$$
                  $$=\dfrac{4}{3}\times3.14\times2\times2\times2$$
                  $$=\dfrac{4}{3}\times3.14\times8$$
                  $$=\dfrac{100.48}{3}$$
                  $$=33.493\ cm^3$$
  • Question 4
    1 / -0
    What is the surface area of the given sphere?

    Solution
    We know, the surface area of sphere$$=4\pi r^2$$.
    Given, diameter, $$d=14\ in$$
    Then, radius, $$r=\dfrac{d}{2}=\dfrac{14}{2}=7\ in$$.
    After substituting the values in the given formula we get:
    Surface area, $$A=4\times3.14\times7^2$$
    $$=4\times3.14\times7\times7$$
    $$=615.44\ in^2$$.
    Therefore, option $$C$$ is correct.
  • Question 5
    1 / -0
    What is the volume of the hemisphere with a diameter $$5.5$$ in. ?
    Solution
    $$\displaystyle Diameter=\frac { radius }{ 2 } $$
    $$\displaystyle 5.5\times 2=radius$$
    $$\displaystyle Radius=11in$$
    Volume of hemisphere $$\displaystyle =\frac { 2 }{ 3 } \pi { r }^{ 3 }$$
    $$\displaystyle =\frac { 2 }{ 3 } \times 3.14\times 11\times 11\times 11$$
    $$\displaystyle 2786.22 {\ in }^{ 3 }$$
  • Question 6
    1 / -0
    Calculate the volume of the hemisphere with radius $$\dfrac {1}{3}$$ m.
    Solution
    Given, radius of hemisphere $$\dfrac {1}{3}$$ m
    Volume of hemisphere $$\displaystyle =\frac { 2 }{ 3 } \pi { r }^{ 3 }$$
    $$\displaystyle =\frac { 2 }{ 3 } \times 3.14\times \frac { 1 }{ 3 } \times \frac { 1 }{ 3 } \times \frac { 1 }{ 3 } $$
    $$\displaystyle =0.077{ m }^{ 3 }$$
  • Question 7
    1 / -0
    The surface area of a football is $$616{\ mm }^{ 2 }.$$ Calculate its radius.
    Solution
    Let the radius of the football be $$r.$$ then its surface area will be $$4\pi r^2.$$

    But it is given that, the surface area of football is equal to $$616\ mm^2.$$

    Hence,
    $$616=4 \pi r^2$$
    $$\Rightarrow \displaystyle 616=4\times \frac { 22 }{ 7 } \times { r }^{ 2 }$$
    $$\Rightarrow \displaystyle \dfrac {{ \left( 616\times 7 \right)  }}{{ \left( 4\times 22 \right)  }}={ r }^{ 2 }$$
    $$\Rightarrow \displaystyle \dfrac {4312}{88}={ r }^{ 2 }$$
    $$\Rightarrow \displaystyle 49={ r }^{ 2 }$$
    $$\Rightarrow \displaystyle r=7\ mm$$

    Therefore, option $$B$$ is correct.
  • Question 8
    1 / -0
    A company packages its juice in a tetra pack shown below. How much quantity of juice does it contain.

    Solution
    Quantity of juice in the package $$=$$ Volume of cuboidal package
                                                          $$ =$$ $$l\times b\times h$$
                                                           $$=$$ $$4\times 4\times 10$$
                                                           $$=$$ $$160$$ $${ cm }^{ 3 }$$

  • Question 9
    1 / -0
    The volume of the hemisphere is $$\displaystyle 2100{ cm }^{ 3 }$$. Find its radius. (Round off your answer to the nearest whole number).
    Solution
    Volume of hemisphere $$\displaystyle =\frac { 2 }{ 3 } \pi { r }^{ 3 }$$
    $$\Rightarrow \displaystyle 2100=\frac { 2 }{ 3 } \times \frac { 22 }{ 7 } \times { r }^{ 3 }$$
    $$\Rightarrow \displaystyle 2100\times 3\times \dfrac {7}{( 2\times 22)} ={ r }^{ 3 }$$
    $$\Rightarrow \displaystyle \dfrac {44100}{44}={ r }^{ 3 }$$
    $$\Rightarrow \displaystyle { r }^{ 3 }=1002.27$$
    $$\Rightarrow \displaystyle r=\sqrt [ 3 ]{ 1002.27 } $$
    $$\Rightarrow \displaystyle r=10$$ cm
  • Question 10
    1 / -0
    The formula used for volume of the hemisphere is ______.
    Solution
    The formula used for volume of the hemisphere is $$\displaystyle \frac { 2 }{ 3 } \pi { r }^{ 3 }$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now