Self Studies

Surface Areas and Volumes Test - 42

Result Self Studies

Surface Areas and Volumes Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The curved surface area of the cylinder is $$2\pi r h$$ where as surface area of the cylinder is
    Solution
    The curved surface area of the cylinder is $$2\pi r h$$ where as surface area of the cylinder is $$2\pi r(r+h)$$.
    Surface area includes curved surface area and two circular bases of the cylinder.

  • Question 2
    1 / -0
    Find the volume of the hemisphere with radius $$6$$ cm.
    Solution
    Given, radius of hemisphere $$=6$$ cm
    Volume of the hemisphere $$=$$ $$\dfrac{2}{3}\pi r^3$$
    $$=$$ $$\dfrac{2}{3}\times 3.14 \times  6^3$$
    $$= 452.16 $$ $$cm^3$$
  • Question 3
    1 / -0
    The radius of a hemisphere is $$10\ cm$$. Calculate it's volume.
    Solution
    Given, 
    radius of the hemisphere$$=10\ cm$$

    Volume of hemisphere $$=\dfrac{2}{3}\pi r^3$$

                                           $$=\dfrac{2}{3}\times\dfrac{22}{7}\times 10^3\ cm^3$$

                                           $$=\dfrac{2}{3}\times\dfrac{22}{7}\times 1000\ cm^3$$

                                           $$=2095.24\ cm^3$$

    Hence, the volume of the hemisphere is $$2095.24\ cm^3$$ .
  • Question 4
    1 / -0
    What is the volume of the hemisphere with radius $$21$$ cm?
    Solution
    Given, radius of hemisphere $$=21$$ cm
    Volume of the hemisphere $$=$$ $$\dfrac{2}{3}\pi r^3$$
    $$=$$ $$\dfrac{2}{3}\times \dfrac{22}{7} \times 21^3$$
    $$=$$ $$19404$$ $$cm^3$$
  • Question 5
    1 / -0
    Calculate the surface area of hemisphere having the radius of $$1.4$$ cm.
    Solution
    Formula for surface area of the hemisphere with radius $$r$$ is $$S=2\pi r^2$$
    Given , radius $$= 1.4$$ cm
    $$S=2\times \cfrac{22}{7}\times 1.4^2$$
      $$=12.32\ cm^2$$
  • Question 6
    1 / -0
    The diagram shows the cross section of six identical marbles touching each other on a horizontal surface.
    If the volume of a mabrle is $$\dfrac{9 \pi}{2} cm^3$$, calculate the length of PQ, in cm.

    Solution
    Given: Volume of one marble $$=\dfrac{9\pi}{2}\ cm^3$$

    Let the radius of each marble be $$r$$ cm.

    Then volume of each marble $$= \dfrac{4}{3} \pi r^3$$

                                              $$  \dfrac{9 \pi}{2} =\dfrac{4}{3} \pi r^3$$

                                                 $$r^3=\dfrac{9\pi}{2}\times \dfrac{3}{4}\times \dfrac{1}{\pi}$$

                                                 $$r^3=\dfrac{27}{8}$$

                                                  $$ {r = \dfrac{3}{2}}$$

    Hence diameter of each marble $$=2\times \dfrac32=3\ cm$$

    We know that 

          $$PQ = 6 \times $$ diameter of each marble 

                  $$  = 6 \times 3 = 18\ cm$$
  • Question 7
    1 / -0
    The largest possible sphere is carved out of a wooden solid cube of side $$7$$ cm. Find the volume of the wood left. $$\left[\text{Use } \displaystyle \pi =\dfrac { 22 }{ 7 }\right]$$
    Solution

    For such sphere its diameter should be equal to the side of sphere.

    Diameter of sphere $$= 7$$ cm

    So, radius $$= 3.5 $$ cm

    Volume of the sphere carved out $$= \dfrac{4}{3}\pi r^3$$

    $$=\displaystyle \frac{4}{3}\times \frac{22}{7}\times 3.5^{3}$$

    $$= 179.7 cm^3$$

    $$\text{Volume of the cube of edge} 'a' \text{units} =a^3 \\= 7^3\\=343$$

    $$\text{Volume of the wooden left} = 343 – 179.7 \\= 163.3\ cm^3$$

  • Question 8
    1 / -0
    Calculate the total surface area of the right circular cylinder shown in the above figure (in square units).

    Solution
    From the given figure, we can see that:
    The diameter of the cylinder $$(d)=20$$ and 
    The height of the cylinder $$(h)=20$$
    Hence, the radius of the cylinder will be $$r=\dfrac{20}{2}=10$$

    We know that, the total surface area of a cylinder is $$2\pi r^2+2\pi r h$$
    Here, $$r=10,\ h=20$$
    $$\therefore \ $$ The total surface area $$=2\pi (10)^{2}+2\pi(10\times20)$$
    $$=2\pi(100+200)$$
    $$=\pi(2\times 300)$$
    $$=600\pi\ square\ units$$

    Hence, the total surface area of the given cylinder is $$600\pi \ square\ units$$.
  • Question 9
    1 / -0
    A hemispherical container with radius 6 cm contains 325 m$$l$$ of milk. Calculate the volume of milk that is needed to fill the container completely. $$(\pi = 3.142)$$
    Solution
    Formula for volume of Hemisphere $$V = \dfrac{2}{3}\pi r^{3} $$

    $$ V = \dfrac{2}{3}\times \pi \times 6^{3} $$

    $$ V = \dfrac{2}{3}\times \dfrac{22}{7} \times 216$$

    $$ \Rightarrow V = 452.57\,cm^{3} $$

    We know that $$1 \ ml = 1 \ cc$$

    Volume $$V$$ in $$ml \ { = 452.57\,ml} $$

    Given volume of milk $$=325 \ ml$$

    $$ \therefore $$ Volume that should be added $$ = 452.57-325\ ml $$
                                                           $$ = {127.57\,ml} $$ 
  • Question 10
    1 / -0
    If the total surface area of a solid hemisphere is $$462$$ $$\displaystyle { cm }^{ 2 }$$, find its volume.
    Note: Take $$\displaystyle \pi =\frac { 22 }{ 7 } $$
    Solution

    Total surface area of the hemisphere $$= 462 {cm}^2$$

    Total surface area of the hemisphere $$= 2\pi r^2$$

    $$\Rightarrow 462 = 3\pi r^2$$

    $$\Rightarrow r = 7$$ cm

    Volume of hemisphere $$= \dfrac{2}{3}\pi r^3$$

    $$V = \dfrac{2}{3}\times \dfrac{22}{7} \times 7^3$$

    $$V = 718.67 {cm}^3$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now