Self Studies

Surface Areas and Volumes Test - 48

Result Self Studies

Surface Areas and Volumes Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Mohit painted the outside of a box of length $$2.5m$$, breadth $$2m$$ and height $$1m$$. How much area did he cover, if he painted all except the bottom of the box?
    Solution
    Area Mohit painted  $$= 2(2.5\times 2+2\times 1+2.5\times 1)-(2.5\times 2)$$
                                       $$=2(5+2+2.5)-(5)$$ 
                                       $$=2(9.5)-5$$
                                       $$=19-5$$
                                       $$=14m^{2}$$

  • Question 2
    1 / -0
    An aquarium is in the form of a cuboid whose external measures are $$80cm\times 30cm\times 40cm$$. The base side faces and back face are to be covered with a coloured paper. Find the area of the paper needed?
    Solution
    Area of paper required $$=$$ area of base $$+$$ 2 area of side $$+$$ area of back
    $$ =(80  \times  30) + 2(30 \times  40)+(80 \times  40) $$
    $$=2400+2400+3200 $$
    $$=8000cm^{2}$$

  • Question 3
    1 / -0
    The curved surface area of a cylinder of the base radius $$7\text{ cm}$$ and height $$25\text{ cm}$$.
    Solution
    $$\because$$  Curved Surface area of cylinder $$=2\pi rh$$
    Given:
    $$r=$$ radius $$=7\text{ cm}$$
    $$h=$$ height $$=25\text{ cm}$$
    $$\therefore$$ Curved Surface Area $$=2\times \cfrac{22}{7}\times 7\times 25$$ $$\text{cm}^{2}$$
                                            $$=50\times 22$$ $$\text{cm}^{2}$$
    $$\therefore$$ Curved Surface Area of cylinder $$=1100\text{ cm}^{2}$$
  • Question 4
    1 / -0
    The volume of hollow sphere is
    Solution

    Where, $$R$$ is a radius of a sphere.
    To find volume of a hollow sphere, we have to subtract the volume of the inner sphere from the volume of the outer sphere.
    Let us assume the radius of outer sphere be $$R$$ and the radius of the inner radius be $$r.$$
    The volume of a outer sphere $$=\dfrac{4}{3}\pi R^3\,cm^3$$

    The volume of a inner sphere $$=\dfrac{4}{3}\pi r^3\,cm^3$$

    $$\therefore$$  Volume of hollow sphere $$=$$ The volume of a outer sphere $$-$$ The volume of a inner sphere

                                                    $$=\dfrac{4}{3}\pi R^3-\dfrac{4}{3}\pi r^3$$

                                                    $$=\dfrac{4}{3}\pi(R^3-r^3)\,cm^3$$

  • Question 5
    1 / -0
    A right circular cylinder tunnel of diameter $$2 \text{ m}$$ and length $$40 \text{ cm}$$ is to be constructed from a sheet of iron. The area of the sheet required in$$\text{ m}^2$$ is  
    Solution
     Area of the required iron sheet $$=$$ Curved surface area of the cylinder
    $$\because$$ Curved surface area of cylinder $$ = 2\pi rh $$
    $$\implies $$ Area $$=2\pi\times \dfrac{40}{100}$$   $$[\because 1\text{ m}=100\text{ cm}$$ and $$r=\dfrac{D}{2}=\dfrac{2}{2}=1\text{ m}]$$
    $$\implies $$ Area $$=\dfrac{4\pi}{5}\text{ m}^2$$
  • Question 6
    1 / -0
    The diameter of the base of a right circular cylinder is $$21\mathrm { cm }$$ and its height is $$10\ \mathrm { cm }$$ . What is the area of the curved surface? 
    Solution
    $$Diameter =21\ cm$$
    $$Radius=\dfrac{21}{2}\ cm$$
    $$Height=10\ cm$$
    We know that the curved surface area of the cylinder
    $$=2\pi r h$$
    $$=2\times \dfrac{22}{7}\times \dfrac{21}{2}\times 10$$
    $$=220\times 3$$
    $$=660\ cm^2$$
  • Question 7
    1 / -0
    The diameter of a sphere whose surface area is $$346.5$$ $$\mathrm { cm } ^ { 2 }$$ is:
    Solution

    Let radius of sphere be $$r$$ cm.

    Given, the surface area of a sphere $$=346.5\ \text{cm}^2$$.

    We know, surface area of sphere $$=4\pi { r }^{ 2 }$$.

    $$4\pi r^2 = 346.5 cm^2 $$

    $$ { { r }^{ 2 } }=\cfrac { 346.5  }{ 4\pi  } $$

          $$=\dfrac{346.5\times7}{4\times22}$$

           $$=\dfrac{2425.5}{4\times22}$$

           $$=27.5625$$   

    $$\implies$$ $$ r=\sqrt { 27.5625 } =5.25\ \text{cm}$$ .

    Therefore, option $$A$$ is correct.

  • Question 8
    1 / -0
    If the surface area of sphere is $$(144\pi)\,{m}^{2}$$, then its volume is  
    Solution
    Surface area of sphere $$=4\pi r^2$$
    $$\Rightarrow 4\pi r^2=144 \pi$$

    $$\Rightarrow r=\sqrt{\dfrac{144}{4}}=\sqrt{\left(\dfrac{12}{2}\right)^2}=6m$$
    $$\Rightarrow $$ Volume $$=\dfrac{4}{3}\pi r^3=\dfrac{4}{3}\times \pi \times 6^3=288\pi m^3.$$

    Hence, the answer is $$\left( 288\pi\right) m^3.$$
  • Question 9
    1 / -0
    Calculate the surface area of a sphere with radius $$3.2 cm$$.
    Solution
    Given, radius of the sphere, $$r=3.2 cm$$.

    Therefore, the surface area of sphere $$=4\pi r^2$$
                                                                    $$=4\pi (3.2)^2\ cm^2$$
                                                                    $$=4 \times 3.14 \times 3.2 \times 3.2\ cm^2$$
                                                                    $$=128.61 \ cm^2$$.

    Hence, option $$B$$ is correct.
  • Question 10
    1 / -0
    If $$'d'$$ is diameter of a sphere, then its volume is-
    Solution
    Volume of sphere:

    $$V=\dfrac{4}{3}\pi r^3$$

    $$r=\dfrac{d}{2}$$

    $$\therefore V=\dfrac{1}{6}\pi d^3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now