Self Studies

Polynomials Test - 23

Result Self Studies

Polynomials Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find roots of equation $$\displaystyle { a }^{ 4 }{ x }^{ 2 }-{ b }^{ 4 }=0$$
    Solution
    $$\displaystyle { a }^{ 4 }{ x }^{ 2 }-{ b }^{ 4 }=0$$
    Since,$$(a^2-b^2)=(a-b)(a+b)$$
    $$\displaystyle \left( { a }^{ 2 }x+{ b }^{ 2 } \right) \left( { a }^{ 2 }x-{ b }^{ 2 } \right) =0,{ a }^{ 2 }x={ b }^{ 2 }and \ ,{ a }^{ 2 }x=-{ b }^{ 2 }$$
    $$\displaystyle x={ { b }^{ 2 } }/{ { a }^{ 2 } },x=-{ { b }^{ 2 } }/{ { a }^{ 2 } }$$
  • Question 2
    1 / -0
    $$p(x) = \dfrac{37}{15}$$ is a _______ polynomial.
    Solution
    The general form of a constant polynomial is $$p(x)=c$$ with constant $$c$$.
     
    Since $$p(x)=\frac { 37 }{ 15 }$$ is a polynomial with constant term $$\frac { 37 }{ 15 }$$ and there is no variable in it.

    Hence, $$p(x)=\frac { 37 }{ 15 }$$ is a constant polynomial.
  • Question 3
    1 / -0
    Is $$\displaystyle x=-10$$ is a solution of $$\displaystyle { x }^{ 2 }+5x-9=0$$?
    Solution
    Put $$\displaystyle x=-10$$ in equation $$\displaystyle { x }^{ 2 }+5x-9=0$$.
    $$\displaystyle { \left( -10 \right)  }^{ 2 }+5\left( -10 \right) -9=100-50-9$$
    $$\displaystyle =\quad 100-59=41\neq 0$$.
    $$\displaystyle \therefore $$ The equation does not have $$x=-10$$, solution.
    Therefore, option $$B$$ is correct.
  • Question 4
    1 / -0
    Is $$\displaystyle x=\dfrac { 5 }{ 2 } $$  a solution of $$\displaystyle \left( 6x+16 \right) \left( 4x+10 \right) =0$$?
    Solution
    Put $$\displaystyle x=\dfrac { 5 }{ 2 } $$ in equation $$\displaystyle \left( 6x+16 \right) \left( 4x+10 \right) =0$$
    $$\displaystyle \left( 6\times \frac { 5 }{ 2 } +16 \right) \left( 4\times \frac { 5 }{ 2 } +10 \right) =\left( \frac { 30 }{ 2 } +16 \right) \left( \frac { 20 }{ 2 } +10 \right) $$
    $$\displaystyle =\left( 15+16 \right) \left( 10+10 \right) $$
    $$\displaystyle =\left( 31 \right) \left( 20 \right) \neq 0$$
    $$\displaystyle \therefore \quad x=\frac { 5 }{ 2 } $$ is not a solution of equation $$\displaystyle \left( 6x+16 \right) \left( 4x+10 \right)$$

    Therefore, option $$B$$ is correct.
  • Question 5
    1 / -0
    Is $$\displaystyle x=-4$$ is a solution of equation  $$\displaystyle { x }^{ 2 }-x-20=0$$?
    Solution
    Put $$x=-4$$ in  equation $$\displaystyle { x }^{ 2 }-x-20=0$$
    $$\displaystyle { \left( -4 \right)  }^{ 2 }-\left( -4 \right) -20=16+4-20=0$$
    $$\displaystyle \therefore \quad x=-4$$ is a solution of equation $$\displaystyle { x }^{ 2 }-x-20=0$$.

    Therefore, option $$A$$ is correct.
  • Question 6
    1 / -0
    Which of the following is INCORRECT?
    Solution

    polynomial is a function of the form $$f(x) = a_{n}x^{n} + a_{n−1}x^{n−1} + ... + a_{2}x^{2} + a_1x + a_0 $$ 

    where $$a_{n}, a_{n−1} , ...  a_{2}  ,a_1  , a_0 $$ .  are contants 

    and $$n$$ is a natural number.

    The degree of a polynomial is the highest power of $$x$$ in its expression. 

    In option A, $$p(x)=5x+5$$

    Highest power of $$x$$ is $$1$$

    So, degree of $$p(x)$$ is $$1$$.


    In option B, $$p(x)=4x^{4}+4$$

    Highest power of $$x$$ is $$4$$

    So, degree of $$p(x)$$ is $$4$$.


    In option C, $$p(x)=x^{8}$$

    Highest power of $$x$$ is $$8$$

    So, degree of $$p(x)$$ is $$8$$.


    Looking at Option $$D$$

    $$p(x) = 9=9.x^{0}$$ 

    Highest power of $$x$$  in $$p(x) $$ is $$=0$$ 

    So, degree of the polynomial $$p(x)$$ is $$0$$.

    Thus, it is incorrect.

    Hence, the answer is option D.

  • Question 7
    1 / -0
    Is $$x=9$$  a solution of $$\displaystyle { x }^{ 2 }-63-2x=0$$?
    Solution
    Put $$x=9$$ in equation $$\displaystyle { x }^{ 2 }-63-2x=0$$.
    $$\displaystyle= { \left( 9 \right)  }^{ 2 }-63-2\left( 9 \right) =81-63-18$$
    $$\displaystyle = 81-81$$
    $$\displaystyle =0$$.
    $$\displaystyle \therefore x=9$$ is solution of equation $$\displaystyle { x }^{ 2 }-63-2x=0$$.
    Therefore, option $$A$$ is correct.
  • Question 8
    1 / -0
    Is $$x=-1$$  a solution of $$\displaystyle { x }^{ 2 }+x+1=0$$?
    Solution
    Put $$x=-1$$ in equation $$\displaystyle { x }^{ 2 }+x+1=0$$.
    $$\displaystyle f(-1)= { \left( -1 \right)  }^{ 2 }+\left( -1 \right) +1$$
    $$\displaystyle =1-1+1\ne0$$.
    $$\displaystyle \therefore \quad x=-1$$ is not a solution of $$\displaystyle { x }^{ 2 }+x+1=0$$.
    Therefore, option $$B$$ is correct.
  • Question 9
    1 / -0
    $$\displaystyle x=\frac { 4 }{ 3 } $$ is a root of equation $$\displaystyle { x }^{ 2 }-\frac { 16 }{ 9 } =0$$
    Solution
    $$\displaystyle { x }^{ 2 }-\dfrac { 16 }{ 9 } =0,\\\left( x+\dfrac { 4 }{ 3 }  \right) \left( x-\dfrac { 4 }{ 3 }  \right) =0$$
    Since,$$\displaystyle \left[ \left( a+b \right) \left( a-b \right) ={ a }^{ 2 }-{ b }^{ 2 } \right] $$
    $$\displaystyle x=\dfrac { -4 }{ 3 }\  and\ \dfrac { 4 }{ 3 } $$ are the roots of  $$\displaystyle { x }^{ 2 }-\dfrac { 16 }{ 9 } =0$$
  • Question 10
    1 / -0
    $$p(x) = 25 $$ is a _______ polynomial.
    Solution
    The general form of a constant polynomial is $$p(x)=c$$ with constant $$c$$.

    Since $$p(x)=25$$ is a polynomial with constant term $$25$$ and there is no variable in it.

    Hence, $$p(x)=25$$ is a constant polynomial.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now