Self Studies

Polynomials Test - 27

Result Self Studies

Polynomials Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the value of the polynomial $$(3x^{ 3 })\times (4x^{ 2 })+7{ x }^{ 5}$$ when $$x=3$$.
    Solution
    $$3{ x }^{ 3 }(4{ x }^{ 2 })+7{ x }^{ 5 }=12{ x }^{ 5 }+7{ x }^{ 5 }=19{ x }^{ 5 }$$.

    To find the value of the expression for $$x = 3$$, we have to substitute $$x = 3$$.
    So, $$19(3)^{ 5 }=19(243)=4617$$
  • Question 2
    1 / -0
    If  $$p(x)=x^{2}-4x+3,$$. Evaluate $$p(2)-p(-1)+p\left ( \dfrac{1}{2} \right )$$.
    Solution
    After putting $$ x=2$$ in equation, we get $$-1$$.
    After putting $$ x=-1$$, we get $$8$$
    After putting $$x=\dfrac12$$, we get $$\dfrac54$$
    So, $$p(2)-p(-1)+p\left(\dfrac12\right) = -1-8+\dfrac{5}{4}$$
    $$ = -9+\dfrac{5}{4}  = \dfrac{-36+5}{4} = \dfrac{-31}{4}$$
  • Question 3
    1 / -0
    If $$p(y) = (y + 2) (y - 2)$$. Find the value of $$p(1)$$.
    Solution
    $$p(y) = (y+2)(y-2)$$

    Putting the value of
    $$y=1$$
    $$p(y) = (1+2)(1-2) = 3\times-1 = -3$$

    $$\textbf{Alternate:}$$
    $$p(y) = (y+2)(y-2) = y^2 - 4$$ [using $$(a-b)(a+b) = a^2-b^2$$)
    $$p(1) = 1^2-4 = -3$$
  • Question 4
    1 / -0

    Zero of the zero polynomial is:

    Solution
    Zeroes of a zero polynomial can be any real number.
    That is, since a zero polynomial is defined as $$p(x)=0$$ for all $$x$$ in real numbers,
    we can say that, its zero can be any real number.

    Therefore, option $$C$$ is correct.
  • Question 5
    1 / -0

    The value of the polynomial $$5x^3-  4x^2 + 3$$ when $$x = -1$$ is

    Solution
    $$5x^{ 3 }-4x^{ 2 }+3$$
    If $$x= -1$$, then replace $$x$$ with $$-1$$, we get
     $$5\times(-1)^{ 3 }-4(-1)^{ 2 }+3$$
     $$=-5-4+3=-6$$
  • Question 6
    1 / -0

    If $$p(x) = x + 3$$, then $$p(3) + p(-3)$$, is equal to

    Solution
    $$p(x) = x + 3$$

    For $$x = 3$$, we get
    $$p(3) = 3 + 3 = 6$$

    For $$x = -3$$
    $$p(-3) = -3 + 3  = 0$$

    So, 
    $$p(3) + p(-3) = 6 + 0 = 6$$
  • Question 7
    1 / -0
    Find $$p(0)$$ for the following polynomial :
    $$p(x) =10x -4x^2-3$$
    Solution
    $$p(x)=10x-4x^{ 2 }-3$$
    $$\Rightarrow p(0)=10(0)-4(0)^{ 2 }-3$$
    $$\Rightarrow p(0)=0-0-3$$
    $$\Rightarrow p(0)=-3$$
  • Question 8
    1 / -0
    The zero polynomial has :
    Solution
    Zeroes of the polynomial mean to find those values of $$x$$ for which the value of the polynomial becomes zero.
    i.e. $$p(x)=0$$
    Now, we have a zero polynomial $$p(x)=0$$.
    This is the zero polynomial and will be true for all values of x belonging to complex numbers.
    Hence, infinite no. of solutions.
  • Question 9
    1 / -0
    If $$f(x) =2x^{2} - x + 1$$ and $$g(x) = x^{3} - 3x + 1$$, then the value of $$f(1) + g(-1)$$ is
    Solution
    $$ f(x)= { 2x }^{ 2 }-x+1\\ \therefore  f(1)=2\times { 1 }^{ 2 }-1+1\\      =2\\ g(x)={ x }^{ 3 }-3x+1\\ \therefore  g(-1)=(-1)^{ 3 }-3\times (-1)+1\\ =-1+3+1\\ =3\\ \therefore  f(1)+g(-1)=2+3\\ =5$$
  • Question 10
    1 / -0
    Simplify: $$(l + m)^2-  4lm$$
    Solution
         $$(l+m)^2-4lm$$
    $$=l^2+2lm+m^2-4lm$$
    $$=l^2-2lm+m^2$$
    $$=(l-m)^2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now