Self Studies

Polynomials Test - 30

Result Self Studies

Polynomials Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the square of:
     $$ 9.7$$
    Solution

    We can write 

    $$ {9.7}^{2} = {(10 - 0.3)}^{2} $$
    It is the form of $$ {(a - b)}^{2} $$, where $$ a = 10, b = 0.3 $$
    Applying the formula $$ { (a - b) }^{ 2 } = {a}^{2}  + { b }^{ 2 } - 2ab$$
    $$  {9.7}^{2} = {(10 - 0.3)}^{2} = {10}^{2}  + { 0.3 }^{ 2 } -2\times 10 \times 0.3 = 100 + 0.09  - 6  = 94.09 $$

  • Question 2
    1 / -0
    If the value of the polynomial $$x^3+2x^2-ax+1$$ at $$x = 2$$ is 11, then find the value of a.
    Solution
    Let,
    $$p(x)=x^3+2x^2-ax+1$$
    Given 
    $$p(2)=11$$
    $$=>2^3+2(2)^2-a(2)+1=11$$
    $$=>8+8-2a+1=11$$
    $$=>-2a=11-8-8-1$$
    $$=>-2a=-6$$
    $$=>a=\frac{6}{2}$$
    $$=>a=3$$
  • Question 3
    1 / -0
    Evaluate: $$\displaystyle\left(\dfrac{7}{8}{x}\, +\, \dfrac{4}{5}{y}\right )^{2}$$.
    Solution

    Given, $$\left(\dfrac{7}{8}{x}+\dfrac{4}{5}{y}\right )^{2}$$.

    We know, $$(x+y)^2=x^2+2xy+y^2$$.

    Then,

    $$\left(\dfrac{7}{8}{x}+\dfrac{4}{5}{y}\right )^{2}$$

    $$=(\dfrac{7}{8}{x})^2+2(\dfrac{7}{8}{x})(\dfrac{4}{5}{y})+(\dfrac{4}{5}{y})^2$$

    $$=\dfrac{49}{64}{x^{2}} +\dfrac{7}{5}{xy}+\dfrac{16}{25}{y^{2}} $$.


    Therefore, option $$D$$ is correct.

  • Question 4
    1 / -0
    Find the value of the polynomial
    $$2a^2-5 a^3+7a-3$$ at $$a = 0, 2$$ and $$-1$$.
    Solution
    Let,
    $$p(a)=2a^2-5 a^3+7a-3$$
    $$p(o)=2(0)^2-5(0)^3+7(0)-3$$
          $$=-3$$
    $$p(2)=2(2)^2-5(2)^3+7(2)-3$$
          $$=8-40+14-3$$
          $$=-21$$
    $$p(-1)=2(-1)^2-5(-1)^3+7(-1)-3$$
          $$=2+5-7-3$$
          $$=-3$$
  • Question 5
    1 / -0
    Find the square of: $$2a + b$$.
    Solution
    Given, $$2a + b$$.

    On squaring, we get, $$(2a+b)^2$$.

    We know,  $$(x+y)^2=x^2+y^2+2xy$$.

    Then,
    $$(2a+b)^2$$
    $$=(2a)^2+b^2+2(2a)(b)$$
    $$=4a^2+4ab+b^2$$.

    Therefore, option $$D$$ is correct.
  • Question 6
    1 / -0
    Find the square of the following number: $$998$$
    Solution
    $$(998)^2=(1000-2)^2$$

    Using, $$(a-b)^2=a^2-2ab+b^2$$, we get
    $$(998)^2 = (1000)^2-2(1000)2+2^2$$
    $$=1000000-4000+4$$
    $$=996004$$
  • Question 7
    1 / -0
    Verify that the numbers given along side of the polynomial are their zeros. $$x^4+2x^3-7x^2-8x+12; -3, -2, 1, 2$$
    Solution
    Here the polynomial $$p(x)$$ is
    $$x^4+2x^3-7x^2-8x+12$$
    Value of the polynomial $$x^4+2x^3-7x^2-8x+12$$
    when $$x=-3$$
    $$P(-3)=(-3)^4+2(-3)^3-7(-3)^2-8(-3)+12$$
    $$=81-54-63+24+12=0$$
    So, $$-3$$ is a zero of $$p(x)$$.

    On putting $$x=-2$$ in the given polynomial, we have
    $$P(-2)=(-2)^4+2(-2)^3-7(-2)^2-8(-2)+12$$
    $$=16-16+28+16+12=0$$
    So, $$-2$$ is a zero of $$p(x)$$.

    On putting $$x=1$$ in the given polynomial, we have
    $$P(1)=(1)^4+2(1)^3-7(1)^2-8(1)+12$$
    $$=1+2-7-8+12=0$$
    So, $$2$$ is a zero of $$p(x)$$.

    On putting $$x=2$$ in the given polynomial, we have
    $$P(2)=(2)^4+2(2)^3-7(2)^2-8(2)+12$$
    $$=16+16-28-16+12=0$$
    So, $$2$$ is a zero of $$p(x)$$.
    Hence, $$-3, -2, 1, 2$$ are the zeros of given polynomial.
  • Question 8
    1 / -0
    What is the zero of the binomial $$ax + b$$?
    Solution
    We will equate the given binomial with zero to get the zeros,
    $$ax + b = 0$$
    $$\Rightarrow ax = - b$$
    $$\Rightarrow x= \dfrac{-b}{a}$$.

    Therefore, option $$D$$ is correct.
  • Question 9
    1 / -0
    What is the value of $$\displaystyle { ax }^{ 2 }+bx+c$$ at $$\displaystyle x=\frac { -b }{ a } $$?
    Solution
    Given expression is $$ax^2+bx+c$$
    For required value put $$x=-\cfrac{b}{a}$$  in the given expression,
    $$\therefore $$ Required Value $$=\displaystyle a\left(\dfrac { -b }{ a }\right) ^{ 2 }+b\left(\frac { -b }{ a } \right)+c$$
    $$\displaystyle =\dfrac { a\times { b }^{ 2 } }{ { a }^{ 2 } } +\dfrac { b\times -b }{ a } +c$$

    $$=\dfrac { { b }^{ 2 } }{ a } -\dfrac { { b }^{ 2 } }{ a } +c$$
    $$=c$$.
  • Question 10
    1 / -0
    Which of the number $$1, \ -1 $$ and $$-3$$ are zeroes of the polynomial $$2x^4+9x^3+11x^2+4x-6$$?
    Solution
    Let $$f(x)=2x^4+9x^3+11x^2+4x-6$$.

    $$f(1)=2(1)^4+9(1)^3+11(1)^2+4(1)-6$$
    $$=2+9+11+4-6=20\neq 0$$.
    $$\therefore$$ $$1$$ is not a zero of the polynomial $$f(x)$$.

    Again $$f(-1)=2(-1)^4+9(-1)^3+11(-1)^2+4(-1)-6$$
    $$=2-9+11-4-6=-6\neq 0$$0
    $$\therefore$$ $$-1$$ is not a zero of the polynomial $$f(x)$$.

    Also $$f(-3)=2(-3)^4+9(-3)^3+11(-3)^2+4(-3)-6$$
    $$=162-243+99-12-6=0$$0
    $$\therefore$$ $$-3$$ is a zero of the polynomial $$f(x)$$.

    Thus $$1$$ and $$-1$$ are not zeros of $$f(x)$$, whereas $$-3$$ is zero of $$f(x)$$.
    Therefore, option $$C$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now