Self Studies

Polynomials Test - 31

Result Self Studies

Polynomials Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$p(x)=x^2-2\sqrt 2x+1$$, then $$p(2\sqrt 2)$$ is equal to :
    Solution
    Given, $$p(x)=x^2-2\sqrt 2x+1$$
    $$\therefore p(2\sqrt2)=(2\sqrt2)^2-2\sqrt 2(2\sqrt2)+1$$
                       $$=8-8+1=1$$
    Option B is correct.


  • Question 2
    1 / -0
    Which out of the following options is a trinomial, having degree 7?
    Solution
    The polynomial $$x^7+6x-8$$ has three terms. The first one is $$x^7$$, the second is $$6x$$, and the third is $$-8$$.

    The exponent of the first term is $$7$$.

    The exponent of the second term is $$1$$ because $$6x = 6x^1$$.

    The exponent of the third term is $$0$$ because $$-8 = -8x^0$$.

    Since the highest exponent is $$7$$, therefore, the degree of $$x^7+6x-8$$ is $$7$$.
  • Question 3
    1 / -0
    The degree of trinomial $$\displaystyle ax^{5}-bx^{4}+c$$ is
    Solution
    The polynomial $$ax^5-bx^4+c$$ has three terms. The first one is $$ax^5$$, the second is $$-bx$$, and the third is $$c$$.

    The exponent of the first term is $$5$$.

    The exponent of the second term is $$1$$ because $$-bx = -bx^1$$.

    The exponent of the third term is $$0$$ because $$c = cx^0$$.

    Since the highest exponent is $$5$$, therefore, the degree of $$ax^5-bx^4+c$$ is $$5$$.
  • Question 4
    1 / -0
    The value of $$25x^2\, +\, 16y^2\, +\, 40xy$$ at $$x = 1$$ and $$y = -1$$ is :
    Solution
    Substitute $$x=1$$ and $$y=-1$$ in the given polynomial.
    $$\therefore 25x^2 + 16y^2 + 40xy = 25(1)^2 + 16(-1)^2 + 40(1)(-1)$$
    =$$25(1) + 16(1) + 40(-1)$$
    =$$25 + 16 - 40$$
    =$$1$$
  • Question 5
    1 / -0
    The value of $$(501)^2\,  -\, (500)^2$$ is :
    Solution
    Given, $$(501)^{2}- (500)^{2}$$.

    We know, $$a^{2}- b^{2}= (a+b)(a-b)$$.

    Then,
    $$(501)^{2}- (500)^{2}$$
    $$=(501+500)(501-500)$$                
    $$=(1001)(1) $$
    $$= 1001$$.

    Therefore, option $$C$$ is correct.
  • Question 6
    1 / -0
    $$\displaystyle \left ( a+b \right )^{2}-\left ( b-a \right )^{2}$$=______
    Solution
    Given, $$\displaystyle \left ( a+b \right )^{2}-\left ( b-a \right )^{2}$$.

    We know, $$a^2-b^2=(a+b)(a-b)$$.

    Then,
    $$\displaystyle \left ( a+b \right )^{2}-\left ( b-a \right )^{2}$$
    = $$\displaystyle \left \{ (a+b)+\left ( b-a \right ) \right \}\left \{ (a+b)-\left ( b-a \right ) \right \}$$
    $$=(a+b+b-a)(a+b-b+a)$$
    $$= 2b \times 2a = 4ab$$.

    Therefore, option $$C$$ is correct.
  • Question 7
    1 / -0
    Simplify:$$\displaystyle \left ( p-q \right )^{2}+4pq$$.
    Solution
    Given, $$(p-q)^2+4pq$$.

    We know, $$(a-b)^2=a^2-2ab+b^2$$
    and $$(a+b)^2=a^2+2ab+b^2$$.

    Therefore, $$(p-q)^2+4pq$$
    $$=p^2-2pq+q^2$$+ 4$$pq$$     [Since, $$(a-b)^2=a^2-2ab+b^2$$]
    $$=p^2 + 2pq +q^2$$
    $$=(p+q)^2$$.                  [Since, $$(a+b)^2=a^2+2ab+b^2$$]

    Therefore option $$B$$ is correct.
  • Question 8
    1 / -0
    $$\displaystyle \left ( x+4 \right )\left ( x-4 \right )\left ( x^{2}+16 \right )$$ is equal to:
    Solution
    Given, $$\displaystyle \left ( x+4 \right )\left ( x-4 \right )\left ( x^{2}+16 \right )$$.

    We know, $$(a+b)(a-b)=a^2-b^2$$.

    Then,
    $$\displaystyle \left ( x+4 \right )\left ( x-4 \right )\left ( x^{2}+16 \right )$$
    = $$\displaystyle \left ( x^{2}-4^{2} \right )\left ( x^{2}+16 \right )$$
    = $$\displaystyle \left ( x^{2}-16 \right )\left ( x^{2}+16 \right )=\left ( x^{2} \right )^{2}-\left ( 16 \right )^{2}$$
    = $$\displaystyle x^{4}-256 $$.

    Therefore, option $$C$$ is correct.
  • Question 9
    1 / -0
    $$\displaystyle \left ( mx-ny \right )\left ( mx-ny \right )$$=_____
    Solution
    $$\displaystyle \left ( mx-ny \right )\left ( mx-ny \right )=\left ( mx-ny \right )^{2}$$
    = $$\displaystyle \left ( mx \right )^{2}-2mx\times ny+\left ( ny \right )^{2}$$
    = $$\displaystyle m^{2}x^{2}-2mxny+n^{2}y^{2}$$
  • Question 10
    1 / -0
    $$a^{2} + 4a + 4$$ =
    Solution
    $$a^{2} + 4a + 4 = a^{2} + 2(a) (2)+ (2)^{2}$$
    $$=(a + 2)^{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now