Self Studies

Polynomials Test - 32

Result Self Studies

Polynomials Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the missing term in the following problem:

    $$\left(\displaystyle \frac{3x}{4}\, -\, \displaystyle \frac{4y}{3} \right )^2\, =\, \displaystyle \frac{9x^2}{16}\, +\, ..........\, +\, \displaystyle \frac{16y^2}{9}$$.

    Solution

    Given, $$\left(\displaystyle \frac{3x}{4}\, -\, \displaystyle \frac{4y}{3} \right )^2\, $$.

    We know, $$(a-b)^2=a^2-2ab+b^2$$.

    Then,

    $$\left(\displaystyle \frac{3x}{4}\, -\, \displaystyle \frac{4y}{3} \right )^2\, $$

    $$=\left( \displaystyle \frac{3x}{4} \right )^2\, -\, 2\, \left(\displaystyle \frac{3x}{4} \right )\left(\displaystyle \frac{4y}{3} \right )\, +\, \left(\displaystyle \frac{4y}{3}\right)^2$$

    $$=\, \displaystyle \frac{9x^2}{16}\, -\, 2xy\, +\, \displaystyle \frac{16y^2}{9}$$

    $$=\, \displaystyle \frac{9x^2}{16}\, +\, (-\, 2xy)\, +\, \displaystyle \frac{16y^2}{9}$$.

    Hence, the missing term is $$-2xy$$.

    Therefore, option $$B$$ is correct.

  • Question 2
    1 / -0
    Simplify: $$(7m -8n)^2 + (7m + 8n)^2$$.
    Solution
    Given, $$(7m -8n)^2 + (7m + 8n)^2$$.

    We know, $$(a-b)^2=a^2-2ab+b^2$$
    and $$(a+b)^2=a^2+2ab+b^2$$.

    Then,
    $$(7m -8n)^2 + (7m + 8n)^2$$
    $$ = ((7m)^2-2(7m)(8n) + (8n)^2)+((7m)^2 + 2(7m)(8n) + (8n)^2)$$
    $$ = (49m^2-112mn + 64n^2)+(49m^2 + 112mn + 64n^2)$$
    $$ = 49m^2-112mn + 64n^2+49m^2 + 112m + 64n^2$$
    $$ = 98m^2 + 128n^2$$.

    Therefore, option $$B$$ is correct.
  • Question 3
    1 / -0
    Simplify: $$3x(4x -5) + 3$$ and find its value for $$x =$$ $$\displaystyle \frac{1}{2}$$
    Solution
    We have, $$3x(4x -5)+ 3 =3x \times  4x-3x \times  5+3$$
                                                 $$ =12x^2-15x + 3$$
    When   $$x=\displaystyle \frac{1}{2}$$, then $$3x (4x-5) +3$$
                 $$=\displaystyle 3 \times \frac{1}{2} \left( 4 \times \frac{1}{2} - 5\right) + 3 $$
                 $$= \displaystyle \frac{3}{2} \times -3 + 3 = -\frac{9}{2} + 3 = -\frac{3}{2}$$
  • Question 4
    1 / -0
    The value of the polynomial $$x^2+5$$, at $$x=3$$ is 
    Solution
    Let $$f(x)=x^2+5$$
    Therefore, at $$x=3$$, $$f(x) = f(3)$$.
    Hence, $$f(3) = 3^2+5 = 9+5 = 14$$
  • Question 5
    1 / -0
    The value of the polynomial $$7x^{4} + 6x^{2} + x$$ when $$x = -2$$ is
    Solution
    given, $$f(x) = 7x^4+6x^2+x$$

    $$f(-2) = 7(-2)^4+6(-2)^2+(-2)$$

    $$f(-2) = 7(16)+6(4)-2$$

    $$f(-2) = 112+22 = 134$$
  • Question 6
    1 / -0
    The value of the polynomial $$4x^{2} + 3x - 7$$ at $$x=1$$ is:
    Solution
    $$f(x) = 4x^2+3x-7$$

    So at $$x=1$$, 

    $$f(1) = 4(1)^2+3(1)-7 $$

    $$f(1) = 4+3-7 = 0$$
  • Question 7
    1 / -0
    If $$f(x) = -3x - 5$$, then the value of $$f(2)$$ is
    Solution
    Given, $$f(x)=-3x-5$$
    Then $$F(2)=-3(2)-5$$
    $$=-6-5$$
    $$=-11$$
  • Question 8
    1 / -0
    If $$\displaystyle x = \frac{4}{3}$$ is a root of the polynomial $$f(x)= 6x^3-11x^2+ kx-20$$, then find the value of $$k$$.
    Solution
    $$f(x) = 6x^3-11x^2+ kx -20$$
    $$\displaystyle f \left ( \frac{4}{3} \right ) = 6 \left ( \frac{4}{3} \right )^3 - 11 \left ( \frac{4}{3} \right )^2 + k \left ( \frac{4}{3} \right )  - 20 = 0$$
    $$\Rightarrow \displaystyle 6 \left ( \frac{64}{27}\right) - 11 \left ( \frac{16}{9} \right ) + \frac{4k}{3} - 20 = 0$$
    $$\Rightarrow 128-176+12k -180 = 0$$
    $$\Rightarrow 12k+128 -356=0$$
    $$ \Rightarrow 12k = 228$$
    $$\Rightarrow k =19.$$
  • Question 9
    1 / -0
    Identify the degree of the given equation: $$\displaystyle { x }^{ 2 }+3x-5={ x }^{ 2 }+9x-23$$
    Solution
    $$x^2+3x-5=x^2+9x-23$$
    We need to bring the given equation to it standard form.
    $$\therefore -5+23=9x-3x$$           .....Transpose
    $$\therefore 18 = 6x$$
    $$\therefore x=3$$

    Here, the highest power of variable $$x$$ is $$1$$.
    Hence, the degree of the given equation is $$1$$.
  • Question 10
    1 / -0
    If $$g (x) = \displaystyle 3x^{2}-2x-5 $$, what is the value of $$g(-1)$$?
    Solution
    Given, $$g(x)=x^{2}-2x-5$$
    Then $$g(-1)=3(-1)^{2}-2(-1)-5$$
    $$=3+2-5$$
    $$=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now