Self Studies

Polynomials Test - 33

Result Self Studies

Polynomials Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For what value of $$k$$, $$-2$$ is a zero of the polynomial  $$3x^2 + 4x + 2k$$?
    Solution
    If $$-2$$ is a zero of $$f(x)=3x^2+4x+2k$$
    Thus,
    $$f(-2)=0$$
    $$\therefore 3(-2)^2+4(-2)+2k=0$$
    $$=>12-8+2k=0$$
    $$=>2k=-4$$
    $$=>k=-2$$
  • Question 2
    1 / -0
    The value of the polynomial $$x^{3} -27$$ when $$x = 3$$ is
    Solution
    Let $$f(x)=x^3-27.$$

    Therefore, at $$x=3$$,
    $$f(3) = 3^3-27$$
             $$ = 27-27$$
             $$= 0$$

    Hence, option $$C$$ is correct.
  • Question 3
    1 / -0
    $$(a -b)^2 -(a + b)^2$$ is equal to:
    Solution
    Given, $$(a -b)^2-(a + b)^2 $$.

    We know, $$(x+y)^2=x^2+2xy+y^2$$
    and $$(x-y)^2=x^2-2xy+y^2$$.

    Then,
    $$(a -b)^2-(a + b)^2 $$
    $$= (a^2 + b^2 -2ab) -(a^2 + b^2 + 2ab) $$
    $$= a^2 + b^2 -2ab -a^2 - b^2 - 2ab) $$
    $$= -4ab$$.

    Therefore, option $$D$$ is correct.
  • Question 4
    1 / -0
    Find the value of $$99\times 101$$ using standard identity.
    Solution
    Given, $$99\times 101=(100-1)(100+1)$$.

    We know, $$(a+b)(a-b) = a^2-b^2$$.

    Then,
    $$99\times 101=(100-1)(100+1)$$
    $$=(100)^2-1^2$$
    $$=10000-1$$
    $$=9999$$.

    Therefore, option $$A$$ is correct.
  • Question 5
    1 / -0
    Using standard identity, find the value of $$(a+2b)^2$$.
    Solution
    Given, $$(a+2b)^2$$.

    We know, $$(x+y)^2=x^2+2xy+y^2$$.

    Then,
    $$(a+2b)^2$$ $$=a^2+(2b)^2 +2\times a\times 2b$$
                     $$=a^2+4b^2+4ab$$.

    Therefore, option $$C$$ is correct.
  • Question 6
    1 / -0
    Using standard identity, find the value of $$102^2$$.
    Solution
    Given, $$102^2$$
    $$=(100+2)^2$$.

    We know, $$(a+b)^2=a^2+2ab+b^2$$.

    Then,
    $$102^2$$
    $$=(100+2)^2$$
    $$=100^2+2^2+2(2)(100) $$
    $$=10000+4+400 $$
    $$= 10404$$.

    Therefore, option $$D$$ is correct.
  • Question 7
    1 / -0
    Using standard identity, find $$(2x-y)^2$$.
    Solution
    Given, $$(2x-y)^2$$

    We know, $$(a-b)^2=a^2-2ab+b^2$$.

    Then,
    $$(2x-y)^2$$
    $$=(2x)^2+y^2-2\times 2x\times y$$
    $$= 4x^2+y^2-4xy$$.

    Therefore, option $$A$$ is correct.
  • Question 8
    1 / -0
    The value of the polynomial $$2x^{5} - 5x^{3} - 10x + 9$$ when $$x = -1$$
    Solution
    $$f(x) = 2x^5-5x^3-10x+9$$
    $$f(-1) = 2(-1)^5-5(-1)^3-10(-1)+9$$
    $$f(-1) = 2(-1)-5(-1)+10+9$$
    $$f(-1) = -2+5+19$$
    $$f(-1) = 22$$
  • Question 9
    1 / -0
    Using standard identity, find the value of $$99^2$$.
    Solution
    Given, 
    $$=99^2$$
    $$=(100-1)^2$$

    We know, $$(a-b)^2=a^2-2ab+b^2$$

    Then,
    $$99^2$$
    $$=(100-1)^2$$
    $$=100^2+1^2 - 2\times 100\times 1$$
    $$= 10000+1- 200$$
    $$=10001-200$$
    $$=9801$$

    Therefore, option $$B$$ is correct.
  • Question 10
    1 / -0
    Find the value of $$995^2-5^2$$.
    Solution
    Given, $$995^2-5^2$$.

    We know, $$a^2-b^2=(a+b)(a-b)$$.

    Then,
    $$995^2-5^2=(995+5)(995-5)$$
    $$=1000\times 990$$
    $$=990000$$.

    Therefore, option $$D$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now