Self Studies

Polynomials Test - 34

Result Self Studies

Polynomials Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following is correct?
    Solution
    We know, $$(a-b)^2=a^2-2ab+b^2$$.

    Then,
    $$(x-y)^2$$
    $$=x^2-2(x)(y)+y^2$$ $$= x^2-2xy+y^2$$.

    To verify this, let us consider:
    $$(x-y)^2$$ $$=(x-y)$$$$(x-y)$$
    $$=x(x-y)-y(x-y)$$
    $$=x^2-xy-yx+y^2$$
    $$=x^2-xy-xy+y^2$$
    $$=x^2-2xy+y^2$$.

    Hence, $$(x-y)^2$$ $$= x^2-2xy+y^2$$

    Therefore, option $$B$$ is correct.
  • Question 2
    1 / -0
    Find the value of $$49^2$$ using standard identity.
    Solution
    As we know that,
    $$(a-b)^2=a^2-2ab+b^2$$

    Substitute $$50$$ for $$a$$ and $$1$$ for $$b$$ in above formula,
    $$\begin{aligned}{}{(50 - 1)^2}& = {50^2} - 2 \times 50 \times 1 + {1^2}\\{49^2}& = 2500 - 100 + 1\\ &= 2401\end{aligned}$$

    Therefore, $$B$$ is correct.
  • Question 3
    1 / -0
    Square of $$3a-4b$$ is:
    Solution
    Given, square of $$3a-4b$$
    i.e. $$(3a-4b)^2$$.

    We know, $$(a-b)^2=a^2-2ab+b^2$$.

    Then,$$(3a-4b)^2$$
    $$= (3a)^2-2(3a)(4b)+(4 b)^2$$
    $$=9a^2-24ab+16b^2$$.

    Therefore, option $$A$$ is correct.
  • Question 4
    1 / -0
    Find the value of $$1.05\times 0.95$$ using standard identity.
    Solution
    Given, $$1.05\times 0.95$$
    $$=(1+0.05)(1-0.05)$$.

    We know, $$(a+b)(a-b)=a^2-b^2$$.

    Then,
    $$1.05\times 0.95$$
    $$=(1+0.05)(1-0.05)$$
    $$=1^2-(0.05)^2$$
    $$=1-0.0025$$
    $$=0.9975$$.

    Therefore, option $$B$$ is correct.
  • Question 5
    1 / -0
    Find the value of $$47\times 53$$.
    Solution
    Given, $$47\times 53 $$
    $$= (50-3)(50+3)$$.

    We know, $$(a+b)(a-b)=a^2-b^2$$.

    Then,
    $$47\times 53 = (50-3)(50+3)$$
    $$=(50)^2-3^2=2500-9=2491$$.

    Therefore, option $$C$$ is correct.
  • Question 6
    1 / -0
    Find the value of $$87^2-13^2$$.
    Solution
    Given, $$87^2-13^2$$.

    We know, $$a^2-b^2=(a+b)(a-b)$$.

    Then,
    $$=87^2-13^2$$
    $$=(87+13)(87-13)$$
    $$=100\times 74=7400$$.

    Therefore, option $$C$$ is correct.
  • Question 7
    1 / -0
    Find the value of $$199\times 201$$.
    Solution
    Given, $$199\times 201$$
    $$ =(200-1)(200+1) $$.

    We know, $$a^2-b^2=(a-b)(a+b)$$.

    Then,
    $$199\times 201$$
    $$ =(200-1)(200+1) $$
    $$= 200^2-1^2$$
    $$= 40000-1$$
    $$=39999$$.

    Therefore, option $$C$$ is correct.
  • Question 8
    1 / -0
    Find the value of $$52^2$$ using standard identity.
    Solution
    Given, $$52^2$$
    $$=(50+2)^2$$.

    We know, $$(a+b)^2=a^2+b^2+2ab$$.

    Then,
    $$52^2=(50+2)^2$$
    $$=50^2+2^2+2\times 50\times 2$$
    $$=2500+4+200$$
    $$=2704$$.

    Therefore, option $$B$$ is correct.
  • Question 9
    1 / -0
    Find the value of $$1.03^2$$ using identity.
    Solution
    Given, $$1.03^2 = (1+0.03)^2$$.

    We know, $$(a+b)^2=a^2+2ab+b^2$$.

    Then,
    $$1.03^2 = (1+0.03)^2$$
    $$=1^2+(0.03)^2+2\times 1\times 0.03$$
    $$=1+0.0009+0.06$$
    $$=1.0609$$.

    Therefore, option $$B$$ is correct.
  • Question 10
    1 / -0
    Find the value of $$(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)$$.
    Solution
    We know, $$(a-b)(a+b)=a^2-b^2$$.

    $$\therefore (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)$$
    $$=(a^2-b^2)+(b^2-c^2)+(c^2-a^2)$$
    $$=a^2-b^2+b^2-c^2+c^2-a^2$$
    $$=0$$.

    Therefore, option $$C$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now