Self Studies

Polynomials Test - 35

Result Self Studies

Polynomials Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The zero of the polynomial $$2x+1$$ is:
    Solution
    Let $$p(x)=2x+1$$

    Consider $$p(x)=0$$

    $$\Rightarrow 2x+1=0$$


    $$\Rightarrow x=\dfrac{-1}{2}$$

    Therefore, $$x=\dfrac{-1}{2}$$ is the zero of the polynomial $$2x+1=0$$
  • Question 2
    1 / -0
    If $$p(x) = 5x - 4$$, then $$p(2) = $$
    Solution
    The polynomial is $$p(x)=5x-4$$ we substitute $$x=2$$ in the polynomial:
    $$p(2)=(5\times 2)-4=10-4=6$$
    Hence, $$p(2)=6$$.
  • Question 3
    1 / -0
    A zero of a polynomial:
    Solution
    Consider the polynomial, $$p(x) = ax^2 + bx +c$$.
    To find the zero of a polynomial, we write $$p(x) = 0$$. 
    Hence, a real number $$c$$ is said to be a zero of the polynomial $$p(x)$$, if $$p(c)=0$$.

    E.g. : Suppose, $$p(x)=x^2$$.
    When $$x=0$$, we get $$p(x)=(0)^2=0$$.

    Clearly, a zero of the polynomial can be any number including $$0$$.
    Therefore, option $$B$$ is correct.
  • Question 4
    1 / -0
    The zero of the polynomial $$3x+5$$ is :
    Solution
    We find the zeros of the given polynomial using:
    $$3x+5=0$$
    $$3x=-5$$
    $$x=\dfrac{-5}{3}$$.
  • Question 5
    1 / -0
    $$\left( 3-\sqrt { 7 }  \right) \left( 3+\sqrt { 7 }  \right) =$$?
    Solution
    Given, $$({3}-{\sqrt { 7 } })$$$$({3}+{\sqrt { 7 } })$$.

    We know, $$(x-y)(x+y)$$ $$={x}^{2}-{y}^{2}$$.

    Thus,
    $$({3}-{\sqrt { 7 } })$$$$({3}+{\sqrt { 7 } })$$
    $$={3}^{2}-{(\sqrt { 7 } )}^{2}$$
    $$=9-7=2$$.

    Therefore, option $$B$$ is correct.
  • Question 6
    1 / -0
    The value of $$(a+b)^2-2(a-b)^2+(a-b)(a+b)$$ is:
    Solution
    Given, $$(a+b)^2-2(a-b)^2+(a-b)(a+b)$$.

    We know, $$(a+b)^{2}=a^2+2ab+b^2$$,
    $$(a-b)^{2}=a^2-2ab+b^2$$
    and $$(a+b)(a-b)=a^2-b^2$$.

    Then,
    $$(a+b)^2-2(a-b)^2+(a-b)(a+b)$$
    $$=(a^2+b^2+2ab)-2(a^2+b^2-2ab)+(a^2-b^2)$$
    $$=a^2+b^2+2ab-2a^2-2b^2+ 4ab+a^2-b^2$$
    $$=2a^2+b^2+6ab-2a^2-3b^2$$
    $$=6ab-2b^2$$.

    Therefore, option $$D$$ is correct.
  • Question 7
    1 / -0
    If $$2$$ is a root of $$kx^4-11x^3+kx^2+13x+2$$, what is the value of $$k$$?
    Solution
    $$f(2) = k\times (2)^4-11\times (2)^3+k\times (2)^2+13\times 2+2$$
    $$f(2)=0$$
    $$16k-88+4k+26+2=0$$
    $$ 20k -88+28=0$$
    $$20k-60=0$$
    $$20k =60$$
    $$k=3$$
  • Question 8
    1 / -0
    If $$p(x) = 5x^2 - 4x + 2$$, then $$p(3) =$$
    Solution
    The given  polynomial  is $$p(x)=5x^2-4x+2$$ we substitute $$x=3$$ in the polynomial:
    $$p(3)=5(3)^2-4(3)+2=5\times 9-12+2=45-12+2=47-12=35$$
    Hence, $$p(3)=35$$.
  • Question 9
    1 / -0
    The zero of a polynomial $$P(x)$$ is:
    Solution
    Consider the polynomial, $$p(x) = ax^2 + bx +c$$.
    To find the zero of a polynomial, we write $$p(x) = 0$$. 
    Hence, a real number $$c$$ is said to be a zero of the polynomial $$p(x)$$, if $$p(c)=0$$.
    Therefore, option $$A$$ is correct.
  • Question 10
    1 / -0
    $$p(a) = 3a^2 + 4a - 4$$ is a polynomial in $$a$$ of degree
    Solution
    The polynomial $$ax^2+bx+c$$  is in standard form.On comparing $$3a^2+4a-4$$ with the standard polynomial we see, the power of the first term is $$2$$. Since the polynomial has the largest exponent, that is $$2$$ which is the degree of the polynomial.

    Hence, the degree of the polynomial is $$2$$.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now