Self Studies

Polynomials Test - 39

Result Self Studies

Polynomials Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A real number '$$\alpha$$' is said to be a ................. of the polynomial $$p(x)$$, if $$p(\alpha) = 0$$.
    Solution
    If we replace the value of $$x$$ by a real number, say $$\alpha$$ in the polynomial $$p(x)$$, such that $$p(x)=0$$, i.e. $$p(\alpha)=0$$, then we say that, the real number '$$\alpha$$' is a zero of the polynomial $$p(x)$$.

    E.g.: Suppose $$p(x)=x-1$$.
    Here, the real number $$1$$ is a zero of the given polynomial as $$p(1)=1-1=0$$, i.e. $$p(1)=0$$.

    Hence, we can say that, a real number $$\alpha$$ is said to be a zero of the polynomial $$p(x)$$, if $$p(\alpha)=0$$.

    That is, option $$B$$ is correct.
  • Question 2
    1 / -0
    Using binomial identities, expand the following expression $$(t+3)^2$$
    Solution
    We need to expand $$(t+3)^2$$
    We know that binomial identities for $$(a+b)^2=a^2+2ab+b^2$$
    So, $$a = t, b = 3$$
    $$=$$ $$t^2+2\times 3t+3^2$$
    $$=$$ $$t^2+6t+9$$
  • Question 3
    1 / -0
    Find the value of $$(2x+5)(2x-5)$$.
    Solution
    We know that binomial identities for $$(x+y)(x-y)=x^2-y^2$$
    $$\therefore (2x+5)(2x-5) = (2x)^2-5^2$$
    $$=$$ $$4x^2-25$$
  • Question 4
    1 / -0
    Simplify the following expression: $$(s-r)^2-(s+r)^2$$
    Solution
    We know that binomial identities for $$(x+y)^2=x^2+2xy+y^2$$
    and $$(x-y)^2=x^2-2xy+y^2$$
    So, $$(s-r)^2-(s+r)^2$$ $$=$$ $$s^2-2sr+r^2-s^2-2sr-r^2$$
    $$=$$ $$-4sr$$
  • Question 5
    1 / -0
    Reduce the following expression using binomial identities: $$(3x+5)(3x+10)$$.
    Solution
    We know that binomial identities for $$(x+y)(x+z)=x^2+(y+z)x+yz$$
    So, $$x = 3x, y = 5, z = 10$$
    $$=$$ $$(3x)^2+(5+10)3x+5\times 10$$
    $$=$$ $$9x^2+45x+50$$
  • Question 6
    1 / -0
    What is the product of $$(x-2x)^2$$?
    Solution
    $$(x-2x)^2 = (x-2x)(x-2x)$$
    $$=$$ $$x.x-x.2x-2x.x+2x.2x$$
    $$=$$ $$x^2-2x^2-2x^2+4x^2$$
    $$=x^2$$
  • Question 7
    1 / -0
    If $$f(x) = x^{2}-1$$, and $$f(2a) = 35$$, then calculate the value of $$a$$.
    Solution
    Given, $$f\left( x \right) ={ x }^{ 2 }-1$$ and $$f\left( 2a \right) =35$$
    Putting $$2a$$ in place of $$x$$
    $$\Rightarrow f\left( 2a \right) ={ \left( 2a \right)  }^{ 2 }-1=35$$
    $$\Rightarrow { \left( 2a \right)  }^{ 2 }-1=35$$
    $$\Rightarrow 4{ a }^{ 2 }=36$$
    $$\Rightarrow { a }^{ 2 }=9$$
    $$\Rightarrow a=\sqrt { 9 } =\pm 3$$
    Value of $$a$$ is $$+3$$ or $$-3$$
    So, correct option is B.
  • Question 8
    1 / -0
    $$x^{3}(x^{2} - 5) = -4x$$
    If $$x > 0$$, what is one possible solution to the equation above?
    Solution
    $$x^3(x^2-5)=-4x$$
    $$\Rightarrow x^5-5x^3+4x=0$$
    $$\Rightarrow x(x^4-5x^2+4)=0$$
    $$\Rightarrow x=0$$ or $$x^4-5x^2+4=0$$
    But given $$x>0$$
    $$\therefore  x^4-5x^2+4=0 $$
    $$ x^4-4x^2-x^2+4=0 $$
    $$\Rightarrow (x^2-4)(x^2-1)=0$$
    $$x^2-4=0$$ or $$x^2-1=0$$
    $$x^2-4=0 \implies x = \pm 2$$
    $$x^2-1=0 \implies x = \pm 1$$
     Since it is  given $$x > 0$$ 
     $$x=1$$ or $$x=2$$
  • Question 9
    1 / -0
    If $$x\Box y=(x+y)^2-(x-y)^2$$. Then $$\sqrt 4\Box \sqrt 5=$$.
    Solution

  • Question 10
    1 / -0
    If $$(3+\sqrt{2})$$ is a root of $${x}^{3}-11{x}^{2}+37x-35=0$$, find the rational root.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now