Self Studies

Polynomials Test - 41

Result Self Studies

Polynomials Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The repeated root of $$x^3+4x^2+5x+2=0$$ is
    Solution
    $$x^{3}+4{x^{2}}+5{x}+2=(x+1)(x^{2}+3{x}+2)$$

    $$=(x+1)(x+1)(x+2)$$

    $$x^{3}+4{x^{2}}+5{x}+2=(x+1)^{2}(x+2)$$

    The repeated root is $$-1$$
  • Question 2
    1 / -0
    The value of $$\displaystyle\left (5^{\tfrac {1}{2}} + 3^{\tfrac {1}{2}}\right ) \left (5^{\tfrac {1}{2}} - 3^{\tfrac {1}{2}}\right )$$ is:
    Solution
    Given, $$\displaystyle\left (5^{\tfrac {1}{2}} + 3^{\tfrac {1}{2}}\right ) \left (5^{\tfrac {1}{2}} - 3^{\tfrac {1}{2}}\right )$$.

    We know,  $$(a+b)(a-b)=a^2-b^2$$.

    Then,
    $$\displaystyle\left (5^{\tfrac {1}{2}} + 3^{\tfrac {1}{2}}\right ) \left (5^{\tfrac {1}{2}} - 3^{\tfrac {1}{2}}\right )$$
    $$=\displaystyle 5^{\tfrac {1}{2}\times2} - 3^{\tfrac {1}{2}\times2}$$
    $$=\displaystyle 5^{1} - 3^{1}$$
    $$=\displaystyle 5- 3$$
    $$=\displaystyle 2$$.

    Hence, option $$A$$ is correct.
  • Question 3
    1 / -0
    Find the value of $$f(x) = x^2+\dfrac{1}{x^2}$$ at $$x= 1, 2$$.
    Solution
    Given: $$f(x)=x^2 + \dfrac{1}{x^2}$$
    At $$x=1 ;$$

    $$f(1)=1^{2}+\dfrac {1}{1^{2}}$$

    $$\Rightarrow f(1)=2$$

    At $$x=2 ;$$

    $$f(2)=2^{2}+\dfrac {1}{2^{2}}$$

    $$\Rightarrow f(2)=\dfrac {17}{4}$$
  • Question 4
    1 / -0
    The polynomial having atmost 3 zero
    Solution
    A polynomial of degree $$3$$ is called a cubic polynomial. 

    For example, $$x^3 - 1,$$ and $$ 4a^3 - 100a^2 + a - 6$$ are cubic polynomials with atmost $$3$$ zeroes (having degree $$3$$).
  • Question 5
    1 / -0
    If one zero of the polynomial $$p(x)={x}^{3}-6{x}^{2}+11x-6$$ is $$3$$, find the other two zeroes.
  • Question 6
    1 / -0
    The number of rational roots of $$(2x+3)(2x+5)(x-1)(x-2)=30$$ is
  • Question 7
    1 / -0
    Using identities, evaluate:
    $$71^2$$.
    Solution
    Given, $$71^2$$,
    i.e. $$71^2$$ $$=(70+1)^2$$.

    We know,
    $$(x+y)^{ 2 }=x^{ 2 }+y^{ 2 }+2xy$$.

    Then,
    $$71^{ 2 }=(70+1)^{ 2 }\\ =70^{ 2 }+(2\times 70\times 1) + 1^2\\ =4900+140+1\\ =5040+1 \\=5041.$$

    Hence, $$71^2=5041$$.

    Therefore, option $$A$$ is correct.
  • Question 8
    1 / -0
    Find the zeros of the polynomial $$3\sqrt2 x^2+ 13x + 6 \sqrt2 $$ and verify the relationship between the zeros.
    Solution
    Let us first factorize the given equation $$3\sqrt 2x^2+13x+6\sqrt2$$ as shown below:

    $$\Rightarrow 3\sqrt { 2 } x^{ 2 }+13x+6\sqrt { 2 } \\ =3\sqrt { 2 } x^{ 2 }+9x+4x+6\sqrt { 2 } \\ =3x(\sqrt { 2 } x+3)+2\sqrt { 2 } (\sqrt { 2 } x+3)\\ =(3x+2\sqrt { 2 } )(\sqrt { 2 } x+3)$$

    Therefore, the zeroes of the given polynomial are:

    $$(3x+2\sqrt { 2 } )=0\\ \Rightarrow x=-\dfrac { 2\sqrt { 2 }  }{ 3 }=\alpha\ \\ (\sqrt { 2 } x+3)=0\\ \Rightarrow x=-\dfrac { 3 }{ \sqrt { 2 }  }=\beta$$ 

    Now, the sum and product of the roots is as follows:

    $$\alpha +\beta =-\dfrac { 2\sqrt { 2 }  }{ 3 } -\dfrac { 3 }{ \sqrt { 2 }  } =-\left( \dfrac { 2\sqrt { 2 }  }{ 3 } +\dfrac { 3 }{ \sqrt { 2 }  }  \right) =\dfrac { -4-9 }{ 3\sqrt { 2 }  } =-\dfrac { 13 }{ 3\sqrt { 2 }  } =-\dfrac { b }{ a } \\ \alpha \beta =\left( -\dfrac { 2\sqrt { 2 }  }{ 3 }  \right) \left( -\dfrac { 3 }{ \sqrt { 2 }  }  \right) =2=\dfrac { 6\sqrt { 2 }  }{ 3\sqrt { 2 }  } =\dfrac { c }{ a }$$ 

    Hence verified.
  • Question 9
    1 / -0
    The value of $${ \left( 1.02 \right)  }^{ 2 }+{ \left( 0.98 \right)  }^{ 2 }$$, corrected to three decimal places is:
    Solution
    Given, $$(1.02)^2+(0.98)^2$$.

    We know, $$(a+b)^2= a^2+2ab+b^2$$.

    Then,
    $$(1.02)^2+(0.98)^2$$
    $$=(1.02)^2+(0.98)^2+(2\times 1.02\times 0.98)-(2\times 1.02\times 0.98$$)
    $$=(1.02+0.98)^2-1.9992$$
    $$=(2)^2-1.9992$$
    $$=4-1.9992$$
    $$=2.0008$$.

    When corrected to three decimal digit,
    $$2.0008$$ $$=2.001$$.

    Therefore, option $$A$$ is correct.
  • Question 10
    1 / -0
    Which of the following is the zeroes of the polynomial $$x^2 + 4x + 4 =$$?
    Solution
    Now,
    $$x^2 + 4x + 4$$
    $$=(x+2)^2$$.
    If $$x^2+4x+4=0$$ then $$x=-2,-2$$.
    So the the zeroes of $$x^2+4x+4 $$ is $$-2$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now