$$ Given\quad that\quad ABCD\quad is\quad a\quad square\quad with\quad A\left( { x }_{ 1 },y_{ 1 } \right) =\left( 3,5 \right) ,\quad B\left( { x }_{ 2 },y_{ 2 } \right) =\left( 7,8 \right) \\ C\left( { x }_{ 3 },y_{ 3 } \right) =\left( 11,5 \right) \quad and\quad D\left( { x }_{ 4 },y_{ 4 } \right) =\left( 7,2 \right) .\\ \therefore \quad The\quad position\quad of\quad Jaspal\quad will\quad be\quad the\quad mid\quad point\quad M(x,y)\\ between\quad AC\quad or\quad BD.\quad (AC=BD\quad \because \quad ABCD\quad is\quad a\quad square).\\ By\quad the\quad section\quad formula\quad for\quad the\quad mid\quad point\quad \\ M(x,y)=\left( \frac { { x }_{ 1 }+{ x }_{ 3 } }{ 2 } ,\frac { { y }_{ 1 }+{ y }_{ 3 } }{ 2 } \right) \quad or\quad M(x,y)=\left( \frac { { x }_{ 2 }+{ x }_{ 4 } }{ 2 } ,\frac { { y }_{ 2 }+{ y }_{ 4 } }{ 2 } \right) .\\ \Longrightarrow M(x,y)=\left( \frac { 3+11 }{ 2 } ,\frac { 5+5 }{ 2 } \right) \quad or\quad M(x,y)=\left( \frac { 7+7 }{ 2 } ,\frac { 8+2 }{ 2 } \right) \\ \Longrightarrow M(x,y)=\left( 7,5 \right) .\\ So\quad the\quad position(co-ordinates)\quad of\quad Jaspal\quad is\quad (7,5).\\ Ans-\quad The\quad position(co-ordinates)\quad of\quad Jaspal\quad is\quad (7,5).\\ $$