Self Studies

Lines and Angles Test - 28

Result Self Studies

Lines and Angles Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the given figure, $$\angle QPB$$  is,

    Solution
    In the given figure,
    $$\angle APR + \angle RPQ + \angle QPB = 180^{\circ}$$
    $$2x + 3x+x = 180^{\circ}$$
    $$6x = 180^{\circ}$$
    $$x = 30^{\circ}$$
  • Question 2
    1 / -0
    In the figure, if OP||RS, $$\angle OPQ=110^0 and \angle QRS =130^0$$, then $$\angle PQR$$  is equal to

    Solution
    As OP||RS,
    $$\angle$$ PQR $$ =180 -(180-110)-(180-130) $$=$$60$$
  • Question 3
    1 / -0
    If two supplementary angles are in the ratio 2 : 7, then the angles are :
    Solution
    $$\textbf{ Hint: Sum of supplementary angles is}$$ $$180^\circ$$

    $$\textbf{Step1: Evaluate using addition of ratio}$$
               $$\text{Given}$$
                $$\text{ratio}$$ $$=2:7$$
                $$\text{ Let angles as }$$ $$2x$$ $$\text{and}$$ $$7x$$
    $$\text{As we know that sum of supplementary angle is }180$$
                $$\Rightarrow 2x+7x=180$$
                $$\Rightarrow 9x=180$$
                $$\Rightarrow x=20$$
                $$2x\Rightarrow 2(20)=40$$
                $$7x\Rightarrow 7(20)=140$$
                $$\text{ Hence, the angles are}$$ $$40^\circ$$ $$140^\circ.$$
    $$\textbf{Option C is correct.}$$
  • Question 4
    1 / -0
    In the figure, if $$\angle A + \angle B + \angle C + \angle D + \angle E + \angle F = k\times $$ right angle, then $$k$$ is :

    Solution
    $$\Rightarrow$$  In $$\triangle ABC$$

    $$\Rightarrow$$  $$\angle A+\angle B+\angle C=180^\circ$$    [Sum of interior angles of triangle is $$180^\circ$$]   --- ( 1 )

    $$\Rightarrow$$  In $$\triangle DEF$$

    $$\Rightarrow$$  $$\angle D+\angle E+\angle F=180^\circ$$  [Sum of interior angles of triangle is $$180^\circ$$]    ---( 2 )

    $$\Rightarrow$$  $$\angle A+\angle B+\angle C+\angle D+\angle E+\angle F=180^\circ+180^\circ$$     [Adding ( 1 ) and ( 2 )]

    $$\Rightarrow$$  $$\angle A+\angle B+\angle C+\angle D+\angle E+\angle F=360^\circ$$

    $$\Rightarrow$$  $$\angle A+\angle B+\angle C+\angle D+\angle E+\angle F=k\times (right\, angle)$$.

    $$\therefore$$  $$k=\dfrac{360^o}{90^o}$$

    $$\therefore$$  $$k=4$$
  • Question 5
    1 / -0
    If one of the angles of a triangle is $$130^0$$, then the angle between the bisectors of the other two angles can be
    Solution
    Let $$x$$ and $$y$$ be the bisected angles.
    So, in the original triangle,
    sum of angles $$=180^o$$
    Therefore, $$2x+2y+130=180$$
    $$\Rightarrow 2(x+y)=50$$
    $$\Rightarrow x+y=25$$
    In the smallest triangle, consisting of original side opposite $$130^o$$.
    Therefore, $$25^o+$$ Angle between bisectors $$=180^o$$
    $$\Rightarrow $$ Angle between bisectors of other two angles $$=155^o$$.
  • Question 6
    1 / -0
    Two supplementary angles are in the ratio 4 : 5. The angles are
    Solution
    Let the angles be $$4x$$ and $$5x$$
    Angles are supplementary 
    $$\therefore 4x+5x={ 180 }^{ \circ  }\\ \Rightarrow 9x={ 180 }^{ \circ  }\\ \Rightarrow x={ 20 }^{ \circ  }$$
    So the angles are
    $$4\times { 20 }^{ \circ  }={ 80 }^{ \circ  }\\ 5\times { 20 }^{ \circ  }={ 100 }^{ \circ  }$$
  • Question 7
    1 / -0
    The angle which exceeds its complement by $$20^{\circ}$$ is:
    Solution
    Let the required angle be $$x$$.
    We knows, complementary angles $$=$$ Sum of two angles is $$90^o$$.
    $$\therefore x = (90^o - x ) + 20^o $$
    $$\therefore$$ $$x = 90^o - x + 20^o$$
    $$\therefore$$ $$ 2x = 110^o$$
    $$\therefore x = 55^o$$.
    Hence, option $$B$$ is correct.
  • Question 8
    1 / -0
    From the adjoining figure, calculate the values of $$a$$.

    Solution
    We know, by angle sum property, the sum of angles of triangle $$= 180^o$$
    Then, $$a + 110^o + 32^o = 180^o $$
    $$\implies$$ $$a + 142^o = 180^o $$
    $$a =180^o-142^o=38^{\circ}$$.

    Thus measure of angle $$a$$ is $$38^o$$.

    Hence, option $$B$$ is correct.
  • Question 9
    1 / -0
    In the given figure, AB // CD, EH // BC, $$\angle BAC = 60^{\circ}$$ and $$\ \angle DGH = 40^{\circ}$$. Find the measures of  $$\angle AFG$$.

    Solution
    Given that $$\angle BAC=60^o$$ and $$\angle DGH=40^o$$.
    $$\implies$$ $$\angle EAF=60^o$$.

    Also, given, $$AE \parallel DG$$.

    Now, $$\angle AEF = \angle DGH = 40^{\circ}$$ (Corresponding angles).

    Then, $$\angle AFG = \angle AEF + \angle EAF$$ (Exterior angle property)

    $$\implies$$ $$\angle AFG = 40^{\circ} + 60^{\circ}$$

    $$\implies$$ $$\angle AFG = 100^{\circ}$$.

    Therefore, option $$C$$ is correct.
  • Question 10
    1 / -0
    In the given figure, AB // CD, EH // BC, $$\angle BAC = 60^{\circ}$$ and $$\ \angle DGH = 40^{\circ}$$. Find the measures of  $$\angle AEF$$ .

    Solution
    Given, $$\angle DGH = 40^{\circ}$$.

    Since $$AB \parallel CD$$,
    $$\implies$$ $$AE \parallel DG$$.

    By corresponding angles axiom,
    $$\angle AEF = \angle DGH = 40^{\circ}$$.

    Hence, option $$B$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now